Tetra Discovery Partners Initiates Phase 2 Trial of BPN14770 in Fragile X Syndrome

Tetra Discovery Partners Initiates Phase 2 Trial of BPN14770 in Fragile X Syndrome

This 2-Period Crossover Study of BPN14770 is accepting adults males with Fragile X syndrome at Rush University Medical Center in Chicago. Principal Investigator of the study is Elizabeth Berry-Kravis, MD, PhD.
A selective inhibitor of the phosphodiesterase type-4D (PDE4D), BPN14770 has shown the ability to improve the quality of connections between neurons and to improve multiple behavioral outcomes in the Fragile X mouse model.

Read more

Understanding and Reversing Hypersensitivity to Sounds in Fragile X Syndrome

Understanding and Reversing Hypersensitivity to Sounds in Fragile X Syndrome

With a $90,000 grant from FRAXA Research Foundation over 2018-2019, Drs. Devin Binder, Iryna Ethell, and Patricia Pirbhoy at the University of California at Riverside aim to understand – and reverse – hypersensitivity to sound in Fragile X syndrome.

Read more

Auditory Dysfunction in Fragile X Syndrome, Role for the Sound Localization Pathway

Auditory Dysfunction in Fragile X Syndrome, Role for the Sound Localization Pathway

FRAXA Research Foundation has renewed Dr. Elizabeth McCullagh’s 2017 FRAXA Fellowship for a second year. Dr. McCullagh and Principal Investigator Dr. Achem Klug are investigating the “cocktail party effect” in Fragile X mice. There is a specific circuit which allows us to discriminate between competing sound sources, helping us focus on a sound source of interest such as with a conversation partner. If clear differences are found in this circuit, they could be used as potential biomarkers for Fragile X clinical trials.

Read more

Three-Dimensional Model for Identifying Fragile X Treatments

Three-Dimensional Model for Identifying Fragile X Treatments

With a $90,000 grant from FRAXA Research Foundation awarded in 2018, Dr. Peng Jin and Dr. Juhnee Kang at Emory University will develop and analyze Fragile X brain organoids to understand the disorder and identify treatment targets.

Read more

Pharmacological Tolerance in the Treatment of Fragile X Syndrome

Pharmacological Tolerance in the Treatment of Fragile X Syndrome

With a $90,000 grant from FRAXA Research Foundation, Dr. Patrick McCamphill and Dr. Mark Bear at Massachusetts Institute of Technology (MIT) will further investigate drug tolerance and ways to overcome it. 

Read more

Repurposing Study II: Evaluating Combinations of Drugs to Treat Fragile X

Repurposing Study II: Evaluating Combinations of Drugs to Treat Fragile X

FRAXA Research Foundation initially partnered with Healx in 2016 to identify existing drugs with potential to treat Fragile X syndrome, using machine learning algorithms and computational biology.  The study produced results, and now FRAXA and Healx have launched a new round of studies to evaluate combinations of compounds, including both drugs and natural products.

Read more

Fragile X Clinical Trial of AZD7325 in Adults

Fragile X Clinical Trial of AZD7325 in Adults

With a $51,000 grant from FRAXA Research Foundation, Dr. Craig Erickson will conduct a double-blind, placebo-controlled clinical trial of AZD7325 in adults with Fragile X syndrome at Cincinnati Children’s Hospital.  The compound being studied is an investigational new drug from AstraZeneca that targets GABA (A) receptors.

Read more

CRISPR Reactivation of the Fragile X Gene

CRISPR Reactivation of the Fragile X Gene

“We are trying to target the first event that goes wrong in Fragile X syndrome”, says Todd, “One reason our previous attempts to develop treatments for Fragile X syndrome have failed is that they’ve tried to target the downstream effects of losing the Fragile X protein. The protein does many things… bypassing all the functions that it normally takes care of has proven difficult from a pharmacologic perspective.”

Read more

Drug Repurposing Study Results Accelerate Progress Towards Fragile X Treatments

Drug Repurposing Study Results Accelerate Progress Towards Fragile X Treatments

While there are over 8,000 rare diseases affecting an estimated 350 million people worldwide, only around 200 of these conditions have effective treatments. Due to the high cost of developing new drugs, rare diseases have historically been less attractive to pharmaceutical companies. Drug repurposing systematically leverages the detailed information available on approved drugs and reduces the time and money needed to deliver safe “new” treatments, but with greater success rates and a potentially more immediate impact on health care.

Read more

In Their Own Words: Reports From the International Fragile X Workshop

In Their Own Words: Reports From the International Fragile X Workshop

The 18th International Fragile X and Related Neurodevelopmental Disorders Workshop in Quebec, Canada, was a great success, featuring Fragile X much more heavily than any previous meeting in this series! We asked our speakers to summarize their work in their own words. These brief updates from researchers investigating Fragile X.

Read more

Brain Imbalance Target of Dr. Erickson’s New Clinical Trial

Brain Imbalance Target of Dr. Erickson’s New Clinical Trial

According to Dr. Erickson, AZD7325 is a drug that selectively boosts GABA neurotransmission in the brain. GABA is the primary neurochemical in the brain that blocks brain activation. GABA activity is in balance in the brain with Glutamate activity, which is the primary neurochemical that causes brain activation. In Fragile X, GABA activity is insufficient and glutamate activity is excessive, likely causing brain activity to be out of balance. AZD7325 attempts to correct parts of this imbalance by boosting the insufficient GABA activity in the brains of people with Fragile X

Read more

Lovamix: Clinical Trial of Combined Treatment of Minocycline and Lovastatin in Fragile X Syndrome

Lovamix: Clinical Trial of Combined Treatment of Minocycline and Lovastatin in Fragile X Syndrome

With a $66,714 grant from the FRAXA Research Foundation awarded over 2015-2017, Dr. Francois Corbin at the Universite of Sherbrooke will test the safety and synergistic effects of lovastatin and minocycline in patients with Fragile X syndrome.

Read more

Combinatorial Drug Treatment in a Model of Fragile X Syndrome using Novel Biomarkers

Combinatorial Drug Treatment in a Model of Fragile X Syndrome using Novel Biomarkers

With a $90,000 grant from FRAXA Research Foundation awarded over 2016-2017, University of California researchers Khaleel Razak, PhD, and Jonathan W. Lovelace, PhD, are exploring drug combinations to limit hypersensitivity to sounds in Fragile X mice.  

Read more

Genome-wide Screen for FMR1 Reactivation in Human FXS Neural Cells

Genome-wide Screen for FMR1 Reactivation in Human FXS Neural Cells

Drs. Mahmoud Pouladi and Kagistia Utami at the Agency for Science, Technology and Research (A*STAR) in Singapore have won a $67,500 research grant from FRAXA Research Foundation. Their goal is to reactivate the gene which is silenced in people who have Fragile X syndrome.

Read more

MicroRNA Mediated Astroglial GLT1 Dysregulation in Fragile X

MicroRNA Mediated Astroglial GLT1 Dysregulation in Fragile X

Almost all brain research focuses on neurons – nerve cells. However, the brain has many more glial cells which support, nourish, and protect the neurons. FRAXA Research Foundation awarded a 2017 grant $90,000 to support Dr. Yang’s studies of how changes in glial cells contribute to Fragile X syndrome. This grant is funded by a grant from the Pierce Family Fragile X Foundation.

Read more

Correcting Fragile X Syndrome Deficits by Targeting Neonatal PKCepsilon Signaling in the Brain

Correcting Fragile X Syndrome Deficits by Targeting Neonatal PKCepsilon Signaling in the Brain

FRAXA Research Foundation has made a 2017 grant of $90,000 to Probal Banerjee, PhD, at the College of Staten Island (CUNY). He is exploring a therapeutic strategy based on correcting abnormalities in the PKCepsilon signaling pathway in Fragile X. 

Read more

Autophagy is a Novel Therapeutic Target of Impaired Cognition in Fragile X Syndrome

Autophagy is a Novel Therapeutic Target of Impaired Cognition in Fragile X Syndrome

Dr. Suzanne Zukin, at Albert Einstein College of Medicine, is expert on signaling pathways in the brain and the regulation of synaptic plasticity. With this 2017 grant of $90,000 from FRAXA Research Foundation, she and her team are exploring autophagy, which is how cells clean house, in Fragile X.

Read more

Quantitative Assessment of the Serotonin System in a Mouse Model of Fragile X Syndrome

Quantitative Assessment of the Serotonin System in a Mouse Model of Fragile X Syndrome

FRAXA Research Foundation awarded a grant of $90,000 over two years to Clinton Canal, PhD.  Dr. Canal, previously a research assistant professor at Northeastern University, has just launched his own lab at Mercer University in Atlanta, GA, to focus on Fragile X research.

Read more

Defining Subcellular Specificity of Metabotropic Glutamate Receptor (mGluR5) Antagonists

Defining Subcellular Specificity of Metabotropic Glutamate Receptor (mGluR5) Antagonists

With $217,500 in grants from FRAXA Research Foundation, Dr. Karen O’Malley and team studied the function of mGluR5 when it is inside cells. Many of the symptoms of Fragile X Syndrome (FXS) are thought to arise due to overactive metabotropic glutamate receptor 5 (mGluR5) signaling, which is normally opposed by the protein missing in FXS, Fragile X Protein (FMRP).

Read more

Investigating Gene Reactivation to Treat Fragile X Syndrome

Investigating Gene Reactivation to Treat Fragile X Syndrome

With a $180,000 grant from FRAXA Research Foundation from 2016-2017, Dr. Jeannie Lee and her team at Harvard are working to reactivate the gene that is silenced in Fragile X syndrome.

Read more

Mechanisms of Tolerance to Chronic mGluR5 Inhibition

Mechanisms of Tolerance to Chronic mGluR5 Inhibition

Over the past few years, both Novartis and Roche sponsored large-scale clinical trials of metabotropic glutamate receptor 5 (mGlu5) negative allosteric modulators (NAMs) to treat Fragile X syndrome (FXS). With a $90,000 grant from FRAXA Research Foundation in 2015-2017, Dr. Mark Bear’s team will explore if mGlu5 NAMs dosed chronically causes tolerance, and if so, how it develops and to probe new avenues to prevent or circumvent it.

Read more

Prefrontal Cortex Network (PFC) Dynamics in Fragile X Syndrome

Prefrontal Cortex Network (PFC) Dynamics in Fragile X Syndrome

With a $90,000 grant from FRAXA Research Foundation from 2016-2017, Dr. Daniel Johnston and Dr. Jenni Siegel at the University of Texas at Austin are analyzing pre-frontal cortex (PFC) dysfunction in the Fragile X model. They have preliminary evidence that Fragile X mice are severely impaired in a prefrontal cortex (PFC)-dependent task.

Read more

Altered Neural Excitability and Chronic Anxiety in a Mouse Model of Fragile X

Altered Neural Excitability and Chronic Anxiety in a Mouse Model of Fragile X

With a $35,000 grant from FRAXA Research Foundation in 2016, Dr. Peter Vanderklish at Scripps Research Institute, and colleagues, explored the basis of anxiety in Fragile X syndrome.

Read more

Development of a High-Content Synapse Assay to Screen Therapeutics for Fragile X Syndrome

Development of a High-Content Synapse Assay to Screen Therapeutics for Fragile X Syndrome

With a $45,000 grant from FRAXA Research Foundation in 2009, Dr. Mark Bear and Dr. Asha Bhakar used High Content Screening (HCS) to develop an assay sensitive to the effect of the FXS genotype. This project was funded in full by NIH after the first year.

Read more