Margaret King accepted the FRAXA Pioneer Award on behalf of Dr. Richard Jope, at the 2013 FRAXA Investigators Meeting

Analysis of Developmental Brain Dysfunction in Families

No strong behavioral similarities were found between parents and children with Fragile X, indicating family history may not guide clinical trial recruitment.

Read More »
Claudia Bagni, PhD, at University of Rome, FRAXA research grant

Crossroads of Fragile X and Alzheimers Research

Last week researchers at VIB Leuven in Belgium published evidence that a brain pathway involving the protein APP (Amyloid Precursor Protein) plays a vital role in development of Fragile X syndrome, one of the most common causes of autism. Scientists led by Dr. Emanuela Pasciuto in the laboratory of Prof Claudia Bagni published findings of their study in the journal Neuron.

Read More »
Bruins $90,000 donation to FRAXA for Fragile X research grant

Boston Bruins Grant Funds New Fragile X Research

The Bruins Foundation pledged $90K to FRAXA, funding new Fragile X research at Gateway Farm in Merrimac, MA.

Read More »

Boston Globe, “Playing a part in finding cure for Fragile X”

Fragile X is rare and not as highly publicized as many other better-known genetic diseases that attract media interest and generate richer revenue streams of giving. The world of the ailing doesn’t prioritize. There is no Find Help 101 manual for funding charities or what makes the public wake up one day and pour out its heart, empty its wallet, join a bike-a-thon for its cure.

Read More »
Nahum Sonenberg

Effects of Metformin in Fmr1 Knockout Mouse Model of Fragile X Syndrome

Metformin, a safe diabetes drug, activates AMPK to rebalance protein synthesis. FRAXA-funded work investigated its potential to treat Fragile X.

Read More »
bugula

Bryostatin Restores Learning and Memory in Adult Fragile X Mice

A bizarre marine critter found off the California coast — Bugula neritina— is the only known source of a potential new Fragile X treatment, Bryostatin. Last month, FRAXA sat down with scientists from Neurotrope BioScience, a specialty biopharmaceutical company developing medicines for rare diseases and Alzheimer’s based on Bryostatin. Their Fragile X program is based on research by a West Virginia team led by Daniel Alkon, MD, which showed that Bryostatin-1 restores hippocampal synapses and spatial learning and memory in adult Fragile X mice.

Read More »
Fragile X Team UMass

Fragile X Programs at UMASS – University of MA, Worcester

Fragile X Syndrome Behavioral Health Clinic The Center for Autism and Neurodevelopmental Disorders (CANDO) is opening a specialty clinic for individuals with Fragile X Syndrome (under the direction of Dr. Jean Frazier) to evaluate and provide treatment for behavioral challenges.

Read More »
Bradley Alger, PhD

The Endocannabinoid System in a Mouse Model of Fragile X Syndrome

Fragile X disrupts endocannabinoid signaling. This study in mice demonstrated that correcting it may calm brain hyperexcitability and improve symptoms.

Read More »
Paul Lombroso, PhD, Yale University, FRAXA Investigator

Inhibitors of STEP as a Novel Treatment of Fragile X Syndrome

STEP inhibition reversed behavioral and synaptic Fragile X deficits in mice (Neuropharmacology, 2018), highlighting STEP as a promising treatment target.

Read More »

Molecular Mechanisms of Cytoskeletal Regulation by FMRP

With FRAXA funding, Dr. Jaffrey linked FMR1 loss to abnormal dendritic spines via RhoA signaling, suggesting RhoA-targeted therapies could help treat Fragile X.

Read More »
Fragile X Student teams at WPI help FRAXA Research Foundation

Students at WPI helping FRAXA Research Foundation

Two WPI student teams are working with FRAXA to improve our website and create a mobile app as part of their Interactive Qualifying Project.

Read More »

NPR, “A Family’s Long Search For Fragile X Drug Finds Frustration, Hope”

There is no effective treatment for the rare genetic disorder Fragile X syndrome, so two parents created a foundation to fund research. But they found there’s no easy road to a cure. For a few weeks last year, Michael Tranfaglia and Katie Clapp saw a remarkable change in their son, Andy…

Read More »
Kimberly Huber, Ph.D., FRAXA Investigator

NIH Awards $35 Million to Three Fragile X Research Teams

The National Institutes of Health has just announced new awards of $35 million over five years to support three Centers for Collaborative Research in Fragile X. Investigators at these centers will seek to better understand Fragile X-associated disorders and work toward developing effective treatments. All of these scientists have been funded for years by FRAXA Research Foundation, and now each team will receive over $2 million per year for five years!

Read More »
Andres Ozaita, PhD

Targeting the Endocannabinoid System in Adult Fragile X Mice

CB1 blockade with rimonabant reversed cognitive, sensory, and seizure symptoms in FXS mice, highlighting the endocannabinoid system as a therapeutic target.

Read More »
Mara Dierssen, MD, PhD

Phase 1 Clinical Trial of Mega Green Tea Extract in Fragile X Syndrome

An early trial of green tea extract EGCG improved cognition in Fragile X. It targets ERβ and reduces overactive PI3K/mTOR/ERK signaling linked to FXS symptoms.

Read More »
Yue Feng, PhD

Functional Interplay Between FMRP and CDK5 Signaling

FRAXA-funded work showed CDK5 signaling is disrupted in Fragile X. CDK5 drugs are in development for Alzheimer’s so this pathway offers a promising new FX treatment angle.

Read More »

Computational Analysis of Neural Circuit Disruption in Fragile X Model Mice

FRAXA-funded researchers used advanced computer models to uncover how FXS brain circuits change and predict which treatments may correct them. Results published.

Read More »

Synaptic Characterization of Human Fragile X Neurons

Stanford scientists used human stem-cell–derived neurons to show that retinoic acid signaling is blocked by Fragile X, revealing a new pathway to target for treatment.

Read More »

Bcl-xL Inhibition as a Therapeutic Strategy for Fragile X Syndrome

Fragile X neurons show leaky mitochondria and excess Bcl-xL–driven synapses. Targeting this pathway may restore energy balance and healthier brain development.

Read More »
Robert Wong, PhD

Seizures in Fragile X Syndrome and Therapeutic Potential of NMDA Receptor Antagonists

Dr. Wong studies how NMDA and mGluR receptors interact to trigger seizures in Fragile X, revealing NR2B-specific blockers as a promising targeted treatment.

Read More »

Novartis Discontinues Development of mavoglurant (AFQ056) for Fragile X Syndrome

Novartis has announced that the company will be discontinuing its development program in Fragile X for its lead mGluR5 antagonist, mavoglurant (AFQ056), following negative results in a large international clinical trial in adults (reported in the Fall of 2013) and most recently, in a trial in adolescents. In both placebo-controlled trials, patients taking mavoglurant did not show improvement over placebo in any outcome measures. Novartis has also announced that the current open-label extension phase of the trial will be closed, but patients will be allowed to continue on the medication until their next scheduled clinic visit, or August 29, whichever comes first.

Read More »

New Clue to Fragile X and Autism Found Inside Brain Cells

Researchers led by Dr. Karen O’Malley at Washington University School of Medicine in St. Louis have published results of their work on mGluR5 and Fragile X syndrome. FRAXA Research Foundation provided funding for this work from 2009 until 2013. Pharmaceutical companies have developed therapeutic compounds to decrease signaling associated with the mGlu5 receptor, moderating its effects on brain cells’ volume knobs. But the compounds were designed to target mGlu5 surface receptors. In light of the new findings, the scientists question if those drugs will reach the receptors inside cells.

Read More »
Samie Jaffrey, PhD, at Weill Medical College of Cornell University, FRAXA research grant

Scientists Uncover Trigger for Fragile X Syndrome

A new study led by Weill Cornell Medical College scientists shows that Fragile X syndrome occurs because of a mechanism that shuts off the gene associated with the disease. The findings, published today in Science, also show that a compound that blocks this silencing mechanism can prevent Fragile X syndrome – suggesting a similar therapy may be possible for 20 other diseases that range from mental retardation to multisystem failure.

Read More »

Small Molecules To Target r(CGG) Expansions to Treat Fragile X Syndrome

FRAXA-funded scientists created small molecules that target the CGG repeat “off-switch” in Fragile X, aiming to restore the missing FMRP protein at its source.

Read More »

Categories

FRAXA Funded Research

Current Research Grants (39)