Research Points to Drugs which Inhibit PDE to Treat Fragile X

Research Points to Drugs which Inhibit PDE to Treat Fragile X

FRAXA Research Foundation funded a grant of $90,000 over 2016-2018, for a postdoctoral fellowship for Thomas Maurin, PhD, working under the mentorship of Dr. Barbara Bardoni at INSERM in France. The team works on the biochemistry of the Fragile X protein. They have found that PDE inhibitors (a class of drugs) show promise as treatments for Fragile X syndrome. In related research, FRAXA is currently funding a clinical trial of PDE4D inhibitors.

Read more

Metformin and Aberrant Insulin Signaling in a Fragile X Mouse Model

Metformin and Aberrant Insulin Signaling in a Fragile X Mouse Model

This 2017-2018 grant of $90,000 is funded jointly by FRAXA and the Fragile X Research Foundation of Canada for the first year. A previous FRAXA grant to the Sonenberg lab has led to great interest in the available drug, metformin, as a potential treatment for Fragile X syndrome. FRAXA is currently organizing clinical trials of metformin.

Read more

Non-Invasive Imaging as a Biomarker for Future Fragile X Clinical Trials

Non-Invasive Imaging as a Biomarker for Future Fragile X Clinical Trials

FRAXA Research Foundation has renewed Kamilla Castro’s 2017 FRAXA Fellowship for a second year. With this $90,000 award, Kamilla Castro and Principal Investigator Dr. Andreas Frick are using non-invasive magnetic resonance imaging (MRI) methodology to assess connectivity changes in the brain in Fragile X. If this project is successful, we will have objective outcome measures to evaluate new treatments, both in mice bred to mimic Fragile X and in human patients.

Read more

Activity-Dependent Translational Profiling in Fragile X Neurons

Activity-Dependent Translational Profiling in Fragile X Neurons

FRAXA’s first-ever grant to researchers at the University of California at Berkeley goes to Dr. Nicholas Ingolia and Dr. J. Wren Kim to analyze the proteomics of Fragile X neurons using a newly developed tool which can distinguish the profiles of neurons that are actively responding to signals.

Read more

Auditory Dysfunction in Fragile X Syndrome, Role for the Sound Localization Pathway

Auditory Dysfunction in Fragile X Syndrome, Role for the Sound Localization Pathway

FRAXA Research Foundation has renewed Dr. Elizabeth McCullagh’s 2017 FRAXA Fellowship for a second year. Dr. McCullagh and Principal Investigator Dr. Achem Klug are investigating the “cocktail party effect” in Fragile X mice. There is a specific circuit which allows us to discriminate between competing sound sources, helping us focus on a sound source of interest such as with a conversation partner. If clear differences are found in this circuit, they could be used as potential biomarkers for Fragile X clinical trials.

Read more

Novel Modulators of Potassium Channels to Treat Fragile X

Novel Modulators of Potassium Channels to Treat Fragile X

With funding from FRAXA, the Yale University team of Leonard Kaczmarek, PhD showed that the firing pattern of suditory neurons in response to repeated stimulation is severely abnormal in Fragile X mice. Based on these results, they are collaborating with the UK-based company Autifony to develop advanced compounds which may reverse these deficits.

Read more

MicroRNA Mediated Astroglial GLT1 Dysregulation in Fragile X

MicroRNA Mediated Astroglial GLT1 Dysregulation in Fragile X

Almost all brain research focuses on neurons – nerve cells. However, the brain has many more glial cells which support, nourish, and protect the neurons. FRAXA Research Foundation awarded a 2017 grant $90,000 to support Dr. Yang’s studies of how changes in glial cells contribute to Fragile X syndrome. This grant is funded by a grant from the Pierce Family Fragile X Foundation.

Read more

Correcting Fragile X Syndrome Deficits by Targeting Neonatal PKCepsilon Signaling in the Brain

Correcting Fragile X Syndrome Deficits by Targeting Neonatal PKCepsilon Signaling in the Brain

FRAXA Research Foundation has made a 2017 grant of $90,000 to Probal Banerjee, PhD, at the College of Staten Island (CUNY). He is exploring a therapeutic strategy based on correcting abnormalities in the PKCepsilon signaling pathway in Fragile X. 

Read more

Autophagy is a Novel Therapeutic Target of Impaired Cognition in Fragile X Syndrome

Autophagy is a Novel Therapeutic Target of Impaired Cognition in Fragile X Syndrome

Dr. Suzanne Zukin, at Albert Einstein College of Medicine, is expert on signaling pathways in the brain and the regulation of synaptic plasticity. With this 2017 grant of $90,000 from FRAXA Research Foundation, she and her team are exploring autophagy, which is how cells clean house, in Fragile X.

Read more

Quantitative Assessment of the Serotonin System in a Mouse Model of Fragile X Syndrome

Quantitative Assessment of the Serotonin System in a Mouse Model of Fragile X Syndrome

FRAXA is proud to make a 2017 grant of $90,000 over two years to Clinton Canal, PhD. Dr. Canal, previously a research assistant professor at Northeastern University, has just launched his own lab at Mercer University in Atlanta, GA. He and his graduate students are fully committed to Fragile X research.

Read more

Mechanisms of Tolerance to Chronic mGluR5 Inhibition

Mechanisms of Tolerance to Chronic mGluR5 Inhibition

Over the past few years, both Novartis and Roche sponsored large-scale clinical trials of metabotropic glutamate receptor 5 (mGlu5) negative allosteric modulators (NAMs) to treat Fragile X syndrome (FXS). With a $90,000 grant from FRAXA Research Foundation in 2015-2017, Dr. Mark Bear’s team will explore if mGlu5 NAMs dosed chronically causes tolerance, and if so, how it develops and to probe new avenues to prevent or circumvent it.

Read more

Prefrontal Cortex Network Dynamics in Fragile X Syndrome

Prefrontal Cortex Network Dynamics in Fragile X Syndrome

With a $90,000 grant from FRAXA Research Foundation from 2016-2017, Dr. Daniel Johnston and Dr. Jenni Siegel at the University of Texas at Austin are analyzing pre-frontal cortex (PFC) dysfunction in the Fragile X model. They have preliminary evidence that Fragile X mice are severely impaired in a prefrontal cortex (PFC)-dependent task.

Read more

Altered Neural Excitability and Chronic Anxiety in a Mouse Model of Fragile X

Altered Neural Excitability and Chronic Anxiety in a Mouse Model of Fragile X

With a $35,000 grant from FRAXA Research Foundation in 2016, Dr. Peter Vanderklish at Scripps Research Institute, and colleagues, explored the basis of anxiety in Fragile X syndrome.

Read more

Targeting Serotonin Receptors to Treat Behavioral and Psychological Symptoms

Targeting Serotonin Receptors to Treat Behavioral and Psychological Symptoms

With a $90,000 grant from FRAXA Research Foundation awarded in 2017, Dr. Clinton Canal targets seratonin receptors. “There are 15 unique serotonin receptors (at least) and many of them impact the function of brain circuits that are impaired in neurodevelopmental and psychiatric disorders,” said Dr. Canal. “Results from this project could guide new drug discovery or drug repurposing for Fragile X.”

Read more

Which is the right FMRP for Therapeutic Development of Fragile X Syndrome?

Which is the right FMRP for Therapeutic Development of Fragile X Syndrome?

With a 2-year, $90,000 grant from FRAXA Research Foundation over 2016-17, Dr. Samie Jaffrey at Weill Medical College of Cornell University explored which FMRP isoform is the best target to treat Fragile X syndrome.

Read more

Fragile X Research Tackles High Anxiety – Peter Vanderklish

Fragile X Research Tackles High Anxiety – Peter Vanderklish

Yes, we all know the signs of Fragile X anxiety: Ears begin turning red followed by incessant pacing, heavy breathing, stiffening body, flapping, jumping, avoidance or yelling. Sometimes, it’s the more severe screaming, pinching, scratching, biting and general tearing things up or, worse, the nuclear meltdown.

Read more

Function of FMRP and Test of a Novel Therapeutic Approach in a Fragile X Mouse Model

Function of FMRP and Test of a Novel Therapeutic Approach in a Fragile X Mouse Model

With a 2015-2016 $90,000 grant from FRAXA Research Foundation, Dr. Herve Moine and Dr. Andrea Geoffroy aim to uncover the exact role of FMRP and to test a novel possible means to correct for FMRP absence in the mouse model of Fragile X syndrome.

Read more

Correcting Defects in Astrocyte Signaling in Fragile X Syndrome

Correcting Defects in Astrocyte Signaling in Fragile X Syndrome

With a $90,000 grant from the FRAXA Research Foundation from 2015-2016, Dr. Laurie Doering and Dr. Angela Scott at McMasters University studied astrocytes in Fragile X. Astrocytes, brain cells which support neurons, do not transmit signals. Several treatment strategies for Fragile X have been proposed based on correction of “astrocyte phenotypes”.

Read more

Fragile X Mutant Mouse Facility

Fragile X Mutant Mouse Facility

With $375,000 in grants from the FRAXA Research Foundation since 2009, Dr. David Nelson has developed an impressive array of advanced mouse models of Fragile X, at Baylor College of Medicine. These models are available to investigators worldwide on request. This resource has been essential for a broad, rapid distribution of Fragile X and related gene mouse models and has increased the pace of Fragile X research.

Read more

Repurposing Drugs to Dampen Hyperactive Nonsense-Mediated Decay in Fragile X Syndrome

Repurposing Drugs to Dampen Hyperactive Nonsense-Mediated Decay in Fragile X Syndrome

With a $90,000 grant from the FRAXA Research Foundation, Dr. Lynne Maquat and Dr. Tatsuaki Kurosaki will investigate nonsense-mediated mRNA decay (NMD) in Fragile X. NMD is a “housekeeping” process that cells use to prevent faulty proteins from being made. But there is too much of it in Fragile X syndrome. There are already available drugs that suppress NMD – including caffeine.

Read more

Altered Sleep in Fragile X Syndrome: Basis for a Potential Therapeutic Target

Altered Sleep in Fragile X Syndrome: Basis for a Potential Therapeutic Target

With a $90,000 grant from FRAXA Research Foundation in 2016, Dr. Carolyn B. Smith and Dr. Rache Sare at the National Institute of Mental Health investigated the basis of sleep problems in Fragile X syndrome.

Read more

Abnormalities of Synaptic Plasticity in the Fragile X Amygdala

Abnormalities of Synaptic Plasticity in the Fragile X Amygdala

With a $110,050 grant from FRAXA Research Foundation from 2005-2016, Dr. Sumantra Chattarji at the National Center for Biological Sciences researched how the amygdala is affected by Fragile X syndrome. Results published.

Read more

Inhibitors of STEP as a Novel Treatment of Fragile X Syndrome

Inhibitors of STEP as a Novel Treatment of Fragile X Syndrome

With a $349,000 grant from FRAXA Research Foundation from 2008-2015, Dr. Paul Lombroso and his team at Yale University researched if inhibiting STEP could reduce behavioral abnormalities in Fragile X syndrome. Results published.

Read more

GABA-A Receptor in Fragile X Syndrome

GABA-A Receptor in Fragile X Syndrome
FRAXA Research Foundation funded studies under the direction of Dr. Frank Kooy at the University of Antwerp in Belgium. $210,000 GrantsFrank Kooy, PhD Principal Investigator University of Antwerp, Belgium FRAXA Research Grants $45,000 in 2010 $100,000 in 2007-8 $65,000 in 1999-2000 by Frank Kooy, PhD Absence of a single protein, FMRP, in Fragile X patients leads to a cascade of molecular events in brain cells. To find out which other genes are involved the clinical symptoms, we have been looking for genes that are differentially expressed in Fragile X syndrome. One of the genes specifically underexpressed is part of the GABAA receptor. As GABA-A receptors are the main inhibitory receptors in the brain, involved in processes like anxiety, mood swings, sleep and cognition, processes also disturbed in Fragile X patients, we followed up on this finding. In subsequent studies, we demonstrated abnormalities in expression levels of multiple parts of the GABA-ARead more