Molecular Mechanisms of Cytoskeletal Regulation by FMRP

With FRAXA funding, Dr. Jaffrey linked FMR1 loss to abnormal dendritic spines via RhoA signaling, suggesting RhoA-targeted therapies could help treat Fragile X.

Read More »
Yue Feng, PhD

Functional Interplay Between FMRP and CDK5 Signaling

FRAXA-funded work showed CDK5 signaling is disrupted in Fragile X. CDK5 drugs are in development for Alzheimer’s so this pathway offers a promising new FX treatment angle.

Read More »

Computational Analysis of Neural Circuit Disruption in Fragile X Model Mice

FRAXA-funded researchers used advanced computer models to uncover how FXS brain circuits change and predict which treatments may correct them. Results published.

Read More »

Synaptic Characterization of Human Fragile X Neurons

Stanford scientists used human stem-cell–derived neurons to show that retinoic acid signaling is blocked by Fragile X, revealing a new pathway to target for treatment.

Read More »

Bcl-xL Inhibition as a Therapeutic Strategy for Fragile X Syndrome

Fragile X neurons show leaky mitochondria and excess Bcl-xL–driven synapses. Targeting this pathway may restore energy balance and healthier brain development.

Read More »
Robert Wong, PhD

Seizures in Fragile X Syndrome and Therapeutic Potential of NMDA Receptor Antagonists

Dr. Wong studies how NMDA and mGluR receptors interact to trigger seizures in Fragile X, revealing NR2B-specific blockers as a promising targeted treatment.

Read More »

Translation-Independent Functions of FMRP in Excitability, Synaptic Transmission and Plasticity

Study pinpointed presynaptic calcium dysfunction as the driver of STP defects in Fragile X, and BK channel activation restored normal synaptic signaling.

Read More »
Kendal Broadie

Matrix Metalloproteinase Therapeutic Treatments for Fragile X Syndrome

Dr. Broadie showed that MMP enzymes disrupt synapse development in Fragile X. MMP inhibitors (e.g. minocycline) improved connectivity and behavior in fruit flies.

Read More »

Endocannabinoid Mediated Synaptic Plasticity in Fragile X Mice

FRAXA-funded studies found faulty endocannabinoid signaling in Fragile X brain circuits for reward and emotion, and boosting 2-AG restored normal function.

Read More »
Kimberly Huber, Ph.D., FRAXA Investigator

Targeting mGluR-LTD to Treat Fragile X Syndrome

With FRAXA support, Dr. Kimberly Huber uncovered how mGluR signaling contributes to Fragile X, laying the foundation for major clinical advances.

Read More »

Preclinical Evaluation of Serotonin Receptor Agonists as Novel Pharmacological Tools in Fragile X Syndrome

With FRAXA funding the team found that activating 5-HT7 receptors reversed excess mGluR-LTD in Fragile X mice, pointing to a new route to fix synapses.

Read More »

Small Rho GTPases, a Potential Therapeutic Target for Fragile X Syndrome

Dr. MariVi Tejada from the University of Houston tested several potential therapeutic compounds in an attempt to rescue function in the mouse model of Fragile X.

Read More »
Kimberly Huber, Ph.D., FRAXA Investigator

Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome

Disrupted mGluR5–Homer scaffolding in Fragile X is linked to excess CaMKII activity. Restoring this interaction could rebalance signaling and improve symptoms.

Read More »
Dr. Kimberly Huber

A Developmental Switch Exists in the Effects of FMRP

Fragile X research found that FMRP’s role in synapse development changes with age—early on it builds synapses, later it removes them—via MEF2 signaling.

Read More »

Synaptic Actin Signaling Pathways in Fragile X

Fragile X neurons show excess or mis-timed actin remodeling at synapses caused by FMRP loss. Modulating actin regulators rescued connectivity in mice.

Read More »

Genetic and Pharmacologic Manipulation of PI3K Activity in FXS: Assessing Potential Therapeutic Value

Targeting the PI3K/mTOR cascade — specifically p110β — in Fragile X mice reversed neural and behavioral dysfunctions, validating it as a treatment pathway.

Read More »
Christopher Cowan, PhD

Reward Function in Fragile X Syndrome

Loss of FMRP disrupts dopamine-driven reward function—Fragile X mice show impaired cocaine sensitization and place preference, revealing new plasticity defects.

Read More »
Andreas Frick, PhD

Inherited Channelopathies in Cortical Circuits of Fmr1 KO Mice

Researchers found that Fragile X brain circuits show faulty ion channel activity (channelopathies). Fixing these channels may restore normal brain signalling.

Read More »
Juan Bacigalupo

In Vitro Coherent Network Activity

This work revealed that Fragile X neurons form disordered network dynamics—laying groundwork for using network activity as a treatment-screening metric.

Read More »

Role of JNK in FMRP Regulated Translation in Fragile X Syndrome

JNK kinase is abnormally active in Fragile X model mice and directly regulates mGluR-dependent translation of FMRP targets, pointing to JNK as a therapeutic target.

Read More »

Serotonergic Rescue of Synaptic Plasticity in FMR1 Knockout Mice

Dr. Zhu examined how serotonin-targeting drugs such as Buspar and Abilify influence synaptic plasticity, including LTP and LTD.

Read More »

Efficient Screening for Pharmaceutical Amelioration of FXS Behavioral Deficits in Drosophila

Using a fruit-fly Fragile X model, researchers screened many drugs quickly to find those that improve behavior, speeding up potential treatment testing.

Read More »

Channelopathies: Altered Ion Channels in Fragile X Syndrome

Ion channel defects (“channelopathies”) in Fragile X disrupt neuron firing and network balance. This study maps these channel changes to guide targeted treatments.

Read More »

Role of Excessive Protein Synthesis in the Ontogeny of FXS

Excessive neuronal protein synthesis is not just a symptom but appears to cause early synaptic wiring defects in Fragile X — highlighting translation control as a key target.

Read More »

Categories

FRAXA Funded Research

Current Research Grants (38)