Fragile X disrupts endocannabinoid signaling. This study in mice demonstrated that correcting it may calm brain hyperexcitability and improve symptoms.
STEP inhibition reversed behavioral and synaptic Fragile X deficits in mice (Neuropharmacology, 2018), highlighting STEP as a promising treatment target.
With FRAXA funding, Dr. Jaffrey linked FMR1 loss to abnormal dendritic spines via RhoA signaling, suggesting RhoA-targeted therapies could help treat Fragile X.
FRAXA-funded work showed CDK5 signaling is disrupted in Fragile X. CDK5 drugs are in development for Alzheimer’s so this pathway offers a promising new FX treatment angle.
FRAXA-funded researchers used advanced computer models to uncover how FXS brain circuits change and predict which treatments may correct them. Results published.
Stanford scientists used human stem-cell–derived neurons to show that retinoic acid signaling is blocked by Fragile X, revealing a new pathway to target for treatment.
Fragile X neurons show leaky mitochondria and excess Bcl-xL–driven synapses. Targeting this pathway may restore energy balance and healthier brain development.
Dr. Wong studies how NMDA and mGluR receptors interact to trigger seizures in Fragile X, revealing NR2B-specific blockers as a promising targeted treatment.
Study pinpointed presynaptic calcium dysfunction as the driver of STP defects in Fragile X, and BK channel activation restored normal synaptic signaling.
Dr. Broadie showed that MMP enzymes disrupt synapse development in Fragile X. MMP inhibitors (e.g. minocycline) improved connectivity and behavior in fruit flies.
FRAXA-funded studies found faulty endocannabinoid signaling in Fragile X brain circuits for reward and emotion, and boosting 2-AG restored normal function.
With FRAXA funding the team found that activating 5-HT7 receptors reversed excess mGluR-LTD in Fragile X mice, pointing to a new route to fix synapses.
Dr. MariVi Tejada from the University of Houston tested several potential therapeutic compounds in an attempt to rescue function in the mouse model of Fragile X.
Disrupted mGluR5–Homer scaffolding in Fragile X is linked to excess CaMKII activity. Restoring this interaction could rebalance signaling and improve symptoms.
Fragile X research found that FMRP’s role in synapse development changes with age—early on it builds synapses, later it removes them—via MEF2 signaling.
Targeting the PI3K/mTOR cascade — specifically p110β — in Fragile X mice reversed neural and behavioral dysfunctions, validating it as a treatment pathway.
Loss of FMRP disrupts dopamine-driven reward function—Fragile X mice show impaired cocaine sensitization and place preference, revealing new plasticity defects.
Researchers found that Fragile X brain circuits show faulty ion channel activity (channelopathies). Fixing these channels may restore normal brain signalling.
This work revealed that Fragile X neurons form disordered network dynamics—laying groundwork for using network activity as a treatment-screening metric.
JNK kinase is abnormally active in Fragile X model mice and directly regulates mGluR-dependent translation of FMRP targets, pointing to JNK as a therapeutic target.
Using a fruit-fly Fragile X model, researchers screened many drugs quickly to find those that improve behavior, speeding up potential treatment testing.