NIH awards $35 Million to three Fragile X research teams

NIH awards $35 Million to three Fragile X research teams

The National Institutes of Health has just announced new awards of $35 million over five years to support three Centers for Collaborative Research in Fragile X. Investigators at these centers will seek to better understand Fragile X-associated disorders and work toward developing effective treatments. All of these scientists have been funded for years by FRAXA Research Foundation, and now each team will receive over $2 million per year for five years!     Kimberly M. Huber, Ph.D., University of Texas Southwestern Medical Center, Dallas (Grant number 1U54 HD082008-01) Many people with Fragile X syndrome are sensitive to sensory stimuli, especially noise. Dr. Huber’s team, along with Khaleel Razak, Ph.D., Iryna Ethell, Ph.D., and Devin Binder, Ph.D. of University of CA at Riverside, will study brain circuits in mouse models and people to try to determine the causes of heightened sensitivity to sound. This information may lead to more targeted therapies.

Read more

Targeting the Endocannabinoid System in Adult Fragile X Mice

Targeting the Endocannabinoid System in Adult Fragile X Mice

With a $90,000 grant from the FRAXA Research Foundation from 2013-2014, Dr. Andres Ozaita led a team to test rimonabant’s ability to blockade the CB1 receptor. Blocking CB1 has shown potential to reverse most symptoms of disease in mice bred to mimic fragile X syndrome.

Read more

Studies of Mega Green Tea Extract to Treat Fragile X Syndrome

Studies of Mega Green Tea Extract to Treat Fragile X Syndrome

With a $124,000 grant from the FRAXA Research Foundation from 2012-2014, Dr. Mara Dierssen and Dr. Rafael de la Torre conducted preclinical studies in fragile X knockout mice and a clinical trial in fragile X patients using Mega Green Tea Extract, which contains 45% by weight epigallocatechin gallate (EGCG).

Read more

Cellular-Specific Therapeutic Targeting of Inhibitory Circuits in Fragile X Syndrome

Cellular-Specific Therapeutic Targeting of Inhibitory Circuits in Fragile X Syndrome

Studies have shown that the function of inhibitory networks is disturbed in fragile X. This abnormality is not well understood but appears to be secondary to abnormalities in metabotropic glutamate and endocannabinoid systems. With a $90,000 grant from FRAXA in 2013-2014, Dr. Molly Huntsman’s team examined how these networks interact and how inhibitory deficits can best be remedied.

Read more

Functional Interplay Between FMRP and CDK5 Signaling

Functional Interplay Between FMRP and CDK5 Signaling

With a $180,000 grant from the FRAXA Research Foundation over 2011-2014, Dr. Yue Feng and Dr. Wenqi Li at Emory University will study CDK5 pathway function and regulation in an effort to break down whether and how CDK5 signaling is affected by the loss of the fragile X protein, FMRP, in the fragile X mouse model.

Read more

Computational Analysis of Neural Circuit Disruption in Fragile X Model Mice

Computational Analysis of Neural Circuit Disruption in Fragile X Model Mice

Computer modeling of the brain offers the hope of predicting how the brain responds to varying conditions, but these models have been rather primitive until recently. The Sejnowski team at the Salk Institute, who specialize in computational models of neural networks, will take the results of previous FRAXA-funded projects and incorporate them into their advanced computer models of brain function.

Read more

Synaptic Characterization of Human Fragile X Neurons

Synaptic Characterization of Human Fragile X Neurons

With a $90,000 grant from FRAXA Research Foundation over 2013-14, Dr. Marius Wernig and Dr. Samuele Marro at Stanford analyzed homeostatic plasticity and regulation of synaptic strength by retinoic acid. If the results are encouraging, they will move forward with testing whether available RA antagonists can alleviate observed abnormalities in these cells.

Read more

Bcl-xL Inhibition as a Therapeutic Strategy for Fragile X Syndrome

Bcl-xL Inhibition as a Therapeutic Strategy for Fragile X Syndrome

Scientists have found increases in the numbers of neurons in brain regions of autistic children, suggesting a problem in developmental programmed cell death pathways. One of the most important effectors of neuronal survival during brain development is the “anti-cell death” protein Bcl-xL. While the normal function of Bcl-xL is to maintain a healthy number of neurons and synapses, over-expressed Bcl-xL can cause an overabundance of synaptic connections. This may be happening in fragile X.

Read more

Seizures in Fragile X Syndrome and Therapeutic Potential of NMDA Receptor Antagonists

Seizures in Fragile X Syndrome and Therapeutic Potential of NMDA Receptor Antagonists
With a $90,000 grant from the FRAXA Research Foundation, Dr. Robert Wong is investigating how seizures are generated in Fragile X neurons. More generally, he is looking at how synapses are modified to enable learning and memory and how this process is impaired in Fragile X. $90,000 Grant Robert Wong, PhD Principal Investigator State University of New York 2013-2014 FRAXA Research Grant $90,000 over 2 Years Abnormal increases in sensitivity of a type of glutamate receptor (group I mGluR) cause brain malfunction, including epilepsy, in Fragile X syndrome (FXS). We are examining a newly uncovered regulation of this increased group I mGluR sensitivity by a second type of glutamate receptor, the NMDA receptor. By looking at audiogenic seizures in FXS model mice, NMDA receptor blockers were found to robustly suppress these seizures at the young developmental stage. In contrast, the same antagonists activated seizure activities, normally dormant, in adult FXS model mice and in a CGGRead more

Novartis Discontinues Development of mavoglurant (AFQ056) for Fragile X Syndrome

Novartis Clinical Trials in Fragile X Ended Novartis has announced that the company will be discontinuing its development program in Fragile X for its lead mGluR5 antagonist, mavoglurant (AFQ056), following negative results in a large international clinical trial in adults (reported in the Fall of 2013) and most recently, in a trial in adolescents. In both placebo-controlled trials, patients taking mavoglurant did not show improvement over placebo in any outcome measures. Novartis has also announced that the current open-label extension phase of the trial will be closed, but patients will be allowed to continue on the medication until their next scheduled clinic visit, or August 29, whichever comes first. No more of the drug will be dispensed to trial participants, but mavoglurant which has already been dispensed will not be recalled. We at FRAXA are disappointed by the negative results, but wish to thank Novartis for conducting superb clinical trials (at great

Read more

Functional Interplay Between FMRP and CDK5 Signaling

Functional Interplay Between FMRP and CDK5 Signaling

Yue Feng, PhD — Emory University School of Medicine with Wenqi Li, PhD, Postdoctoral Fellow FRAXA Awards:  $180,000 $45,000 in 2013 renewed for $45,000 in 2014 $45,000 in 2011 renewed for $45,000 in 2012     Weakened synaptic development and synaptic plasticity, as a result of lacking the functional fragile X protein (FMRP), underlies the intellectual disability in Fragile X Syndrome (FXS). Decades of  investigation established the role of FMRP in binding its mRNA targets and regulating translation in response to neuronal and synaptic activity changes. Exciting discoveries on two receptors, mGluR5 and GABA, signaling in FXS animal models have led to promising therapeutic approaches based on variation of synaptic activity by mGluR5 antagonists and GABA agonists. However, clinical trials only achieved partial reverse of FXS phenotype. Thus, developing additional therapeutic strategies for treating the full spectrum of FXS symptoms are still pressing challenges. The identification of genome-wide  fragile X protein (FMRP)  target mRNAs by recent discoveries provides important clues

Read more

New clue to Fragile X and autism found inside brain cells

Researchers led by Dr. Karen O’Malley at Washington University School of Medicine in St. Louis have published results of their work on mGluR5 and Fragile X syndrome. FRAXA Research Foundation provided funding for this work from 2009 until 2013. Pharmaceutical companies have developed therapeutic compounds to decrease signaling associated with the mGlu5 receptor, moderating its effects on brain cells’ volume knobs. But the compounds were designed to target mGlu5 surface receptors. In light of the new findings, the scientists question if those drugs will reach the receptors inside cells. “Our results suggest that to have the greatest therapeutic benefit, we may need to make sure we’re blocking all of this type of receptor, both inside and on the surface of the cell.”  “This should be a factor we consider when we design drugs to target brain cell receptors. Do we want to reach cell surface receptors, receptors inside the cell

Read more

Scientists Uncover Trigger for Fragile X syndrome

Finding May Explain Many Brain Disorders, Lead to Prevention and Treatment adapted from Weill Cornell Medical College press release   A new study led by Weill Cornell Medical College scientists shows that Fragile X syndrome occurs because of a mechanism that shuts off the gene associated with the disease. The findings, published today in Science, also show that a compound that blocks this silencing mechanism can prevent fragile X syndrome – suggesting a similar therapy may be possible for 20 other diseases that range from mental retardation to multisystem failure. While researchers have known for more than two decades that the culprit behind Fragile X is an unusual mutation characterized by the excess repetition of a particular segment of the genetic code, they weren’t sure why the presence of a large number of these repetitions – 200 or more – sets the disease process in motion. Using stem cells from donated human embryos

Read more

Small Molecules To Target r(CGG) Expansions to Treat Fragile X Syndrome

Small Molecules To Target r(CGG) Expansions to Treat Fragile X Syndrome

With a 2-year, $90,000 grant from FRAXA Research Foundation, Dr.’s Matthew Disney and Wang-Yong Yang worked to correct the underlying problem in fragile X: the silencing of the fragile X gene (FMR1) and the resulting lack of FMRP (Fragile X Mental Retardation Protein). Their approach was to use novel small molecules to target the abnormal CGG repeats before the FMR1 gene.

Read more

FDA Grants Orphan Drug Status to Alcobra’s Metadoxine for Fragile X Syndrome

“We are pleased that the FDA has granted Orphan Drug status to Metadoxine, the active ingredient in MG01CI, in Fragile X,” said Dr. Yaron Daniely, President and Chief Executive Officer of Alcobra Ltd. “We recently achieved positive results from a preclinical study of Fragile X and believe this outcome supports investigation in clinical trials which we plan to initiate in 2014. We recently raised approximately $38 million in a secondary offering, and we believe we now have enough cash to fund the Company through planned submissions of NDA and sNDA filings for MG01CI for adult ADHD, pediatric ADHD and Fragile X Syndrome.” In September this year, Alcobra announced positive findings from a pre-clinical study of Fragile X Syndrome. The study showed significant improvement in cognitive and social functioning following treatment with MG01CI in a valid animal model of Fragile X Syndrome (FMR1 knock-out mouse model). The study was funded in

Read more

Molecular mechanisms: Enzyme blockers help fragile X mice

Nice writeup on SFARI.org – Simons Foundation Autism Research Initiative – about Dr. Richard Jope’s research. Dr. Jope won the 2013 FRAXA Pioneer Award for this work. The mood stabilizer lithium and two other drugs that block an enzyme called GSK-3 reverse cognitive deficits in a mouse model of fragile X. Molecular mechanisms: Enzyme blockers help fragile X mice — SFARI.org – Simons Foundation Autism Research Initiative

Read more

FRAXA Grants and Fellowships for Fragile X Research – 2014 Priorities

Funding Priorities for 2014 Grant Cycle We anticipate particularly keen competition for funding in this grant cycle. Challenging economic times inevitably force us back to fundamental principles, and so our overall priorities for 2014 grants will be to bring new, high-quality scientists into the Fragile X field, and to promote translational, preclinical, and clinical research with the greatest chance of improving therapeutics for those living with Fragile X. Here are a few key implications of these policies: We want new ideas!  The mGluR Theory is now being tested in the clinic; we do not anticipate funding any major new projects investigating mGluR5 function, although there are many possible spin-off projects which could be the basis for successful applications.  Likewise, we do not assign a high priority to studies of every element of mGluR-coupled signaling pathways, unless the topic of study is an especially druggable target.  Most components of signaling pathways in

Read more

How to Donate Stocks (Securities) to FRAXA

People can donate stocks and can realize great tax advantages this way. The details: FRAXA’s account is at StockCross, One Washington Mall, Boston, MA 02108. Phone: (800) 225-6196. Our account is Name:  FRAXA Research Foundation Number 10880094 StockCross’s DTC number (for wire transfers) is 0445 Please let us know so we can be on the lookout for the transfer and thank you!

Read more

FRAXA’s 2014 Top Goals

Complete Phase II/III Clinical Trials of mGluR5 Antagonists – and learn results Currently two large pharmaceutical companies – Novartis and Roche – are conducting large-scale clinical trials of experimental new medications for Fragile X syndrome which target the mGluR5 pathway.  The Novartis trial has finished enrolling adults and adolescents, while a pediatric trial is set to begin soon.  The Roche trial is well on the way to completion as well, but is still enrolling some age groups.  FRAXA has been working diligently to educate families about these trials in the hopes of getting them completed as quickly as possible.  Our goal (of course) is to discover whether these new drugs could be effective treatments for Fragile X, and to see these trials through to marketing of mGluR5 antagonists for Fragile X. Accelerate Clinical Trials of Investigational Treatments, based on research already funded by FRAXA New treatment strategies have emerged and

Read more

New Research Advance: Lithium/GSK3 for Fragile X

New Research Advance: Lithium/GSK3 for Fragile X

Two new papers from FRAXA-funded researcher Dr. Richard Jope demonstrate the potential of GSK3 inhibitors, including the available drug, lithium, to reverse learning deficits in fragile X. Dr. Jope has previously shown that lithium and other more specific inhibitors of the enzyme Glycogen Synthase Kinase 3 (GSK3) can rescue key symptoms in Fragile X mice. These new publications take that study a step further by showing that lithium (at usual therapeutic doses) and investigational GSK3 inhibitors could reverse a number of cognitive deficits in the mice. The Jope group showed that Fragile X mice are abnormal in novel object recognition, spatial memory, and temporal order memory, and that these GSK3-inhibiting compounds could all reverse these defects, along with associated electrophysiological abnormalities. Furthermore, in the short term, these abnormalities were relatively insensitive to treatment with an mGluR5 antagonist (although other studies suggest that prolonged treatment with mGluR5 antagonists can correct these

Read more

Alcobra to Present Fragile X Study Results at 2013 FRAXA Investigators Meeting

Alcobra to Present Fragile X Study Results at 2013 FRAXA Investigators Meeting

Alcobra Ltd., an emerging biopharmaceutical company primarily focused on the development and commercialization of its proprietary drug, MG01CI (Metadoxine extended-release), to treat cognitive dysfunctions, announced today that Dr. Patricia Cogram of FRAX/DVI, in conjunction with Alcobra, will present results from the Company’s Fragile X mouse study at the FRAXA Investigators Meeting in Southbridge, MA, being held from September 29 through October 2. Once the presentation has concluded, a copy of the preclinical data will be available at http://www.alcobra-pharma.com/events.cfm. “We look forward to having an opportunity to present our significant study results on the use of MG01CI for the treatment of Fragile X Syndrome to a qualified group of experts,” commented Dr. Yaron Daniely, President and Chief Executive Officer of Alcobra Ltd. “Our pre-clinical study using Metadoxine to treat Fragile X showed significant improvement in behavioral outcomes assessed within an animal model.” Dr. Jonathan Rubin, Chief Medical Officer of Alcobra Ltd.

Read more

Fragile X syndrome protein linked to breast cancer progression

Having Fragile X Syndrome may protect against breast cancer ​Claudia Bagni (VIB/KU Leuven, Belgium, and the University of Rome, Italy) and colleagues have identified the way Fragile X Mental Retardation Protein or FMRP contributes to the progression of breast cancer. The researchers demonstrated that FMRP acts as a master switch controlling the levels of several proteins involved in different stages of aggressive breast cancer, including the invasion of cancer cells into blood vessels and the spread of these cancer cells to other tissues forming metastasis. The work is published online in EMBO Molecular Medicine. The authors identified high levels of FMRP in human breast cancer tissue microarrays and also examined the effects of FMRP levels in a mouse model to study breast cancer. In these mice, high levels of FMRP in primary breast cancer tumors were also linked to the spread of the cancer to the lungs and the development

Read more

Social Behavior as an Outcome Measure for Fragile X Clinical Trials

Social Behavior as an Outcome Measure for Fragile X Clinical Trials

One of the features of the fragile X mouse model which is relevant to the human fragile X syndrome (and autism) is social behavior. Several tests show consistent social behavioral abnormalities in the fragile X mouse model. With a $140,000 grant from FRAXA Research Foundation in 2012-2013, Dr. Willemsen at Erasmus University used social behavior tests to measure the effectiveness of several drug strategies.

Read more

Translation-Independent Functions of FMRP in Excitability, Synaptic Transmission and Plasticity

Translation-Independent Functions of FMRP in Excitability, Synaptic Transmission and Plasticity

With a $140,000 grant from FRAXA Research Foundation, Dr. Vitaly Klyachko and team at Washington University explored STP (short-term plasticity) in fragile X, namely looking at presynaptic calcium dynamics as a major underlying cause of the STP defects.

Read more

Development of a Novel GABA-A Agonist in Fragile X Syndrome

Development of a Novel GABA-A Agonist in Fragile X Syndrome

Of the many genes known to be regulated by FMRP, the gamma-aminobutyric acid receptor A (GABA(A)), is gaining attention as a potential target for the treatment of FXS. Mounting evidence suggests decreased expression and functioning of GABA(A) is involved in the pathophysiology of FXS. Non-selective GABA(A) agonism in animal models of FXS has been associated with normalization of morphological features, GABA(A) expression, and behavior. However, the clinical use of these agents in fragile X is associated with unwanted side-effects, such as sedation, dulling of cognition, and occasional paradoxical agitation, which limits their use. Given the limitations in available GABA(A)-based treatment of FXS, this group plans to investigate a novel selective GABA(A) agonist in a mouse model of FXS. This agent has the potential to relieve many symptoms of fragile X without the unwanted side effects.

Read more