Pharmacological Tolerance in the Treatment of Fragile X Syndrome

Pharmacological Tolerance in the Treatment of Fragile X Syndrome

With a $90,000 grant from FRAXA Research Foundation, Dr. Patrick McCamphill and Dr. Mark Bear at Massachusetts Institute of Technology (MIT) will further investigate drug tolerance and ways to overcome it. 

Read more

Repurposing Available Drugs to Treat Fragile X Syndrome – FRAXA Initiatives

Repurposing Available Drugs to Treat Fragile X Syndrome – FRAXA Initiatives
FRAXA Research Foundation was founded in 1994 to fund biomedical research aimed at finding a cure for Fragile X syndrome and, ultimately, autism. We prioritize translational research with the potential to lead to improved treatments for Fragile X in the near term. Our early efforts involved supporting a great deal of basic neuroscience to understand the cause of Fragile X. By 1996, these efforts had already begun to yield results useful for drug repurposing. To date, FRAXA has funded well over $25 million in research, with over $3 million of that for repurposing existing drugs for Fragile X. Here are some examples of FRAXA-funded work on repurposing available drugs for Fragile X syndrome: Lithium In the mid-1990s, the Greenough lab at the University of Illinois discovered that FMRP, the protein missing in Fragile X, is rapidly translated in dendrites in response to stimulation of glutamate receptors. FRAXA funded preclinical validation of this discovery in theRead more

NIH Investigator Carolyn Beebe Smith, PhD, Looks to Improve Sleep in Fragile X Syndrome

NIH Investigator Carolyn Beebe Smith, PhD, Looks to Improve Sleep in Fragile X Syndrome
Our sons with Fragile X Syndrome typically go to bed early and rise early. Sometimes they jump on us while we are sleeping at 3 a.m., excited to start their day. For heaven’s sake, whY, wHY, WHY? The answer may come from Carolyn Beebe Smith, PhD, senior investigator, Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland. She is studying why children, in particularly boys, with FXS have problems sleeping. “We know sleep is important for many aspects of brain function,” said Dr. Smith, who received a PhD from the University of London where she studied the chemical pathology of Alzheimer’s for which she was awarded the Queen Square Prize. “In studies of healthy mice, we have shown restricted sleep during brain development can result in long-lasting changes in behavior. We are interested in understanding if sleep problems contribute to severity ofRead more

FRAXA Grants and Fellowships for Fragile X Research – 2016 Funding Priorities

FRAXA Grants and Fellowships for Fragile X Research – 2016 Funding Priorities
2016 Funding Priorities Start with Clinical Trials While FRAXA Research Foundation’s research goals remain largely unchanged, the landscape in which we operate has changed significantly in the past few years.  Negative results from the major clinical trials of investigational agents have resulted in cessation of development of mGluR5 antagonists for Fragile X syndrome.  There is still much evidence that this drug class could be successful as a Fragile X therapeutic, but we do not see the need for more “proof of principle”-type preclinical research on mGluR5 antagonists. Studies of possible mechanisms of tolerance in Fragile X would be appealing as a topic going forward, as would studies of circuit function in Fragile X, since available evidence suggests some form of circuit-based (rather than synaptic) tolerance in Fragile X mice and humans. Other potential areas of interest would include exploration of combination treatment strategies, both in animal models and in clinicalRead more

Fruit Flies to Model and Test Fragile X Treatments

Fruit Flies to Model and Test Fragile X Treatments

Dr. Jongens and his collaborators have found an insulin-like protein in the fly brain that is overexpressed in the Fragile X mutant fly, leading to increased activity of the insulin signaling pathway. Furthermore, they found that certain behavioral patterns in the Fragile X flies can be rescued by expressing the FX gene just in insulin producing neurons in the fly brain. In the mutant, there are other changes in the signaling pathways, including a decrease in cAMP and elevation in PI3K, mTOR, Akt and ERK activity. They now propose to study 2 medicines used for diabetes: pioglitazone (increases cAMP and decreases Akt and ERK) and metformin (inhibits mTOR), in flies and mice to validate the potential efficacy of these novel therapeutics for Fragile X.

Read more

Why Did Fragile X Clinical Trials of mGluR Antagonists Fail?

Why Did Fragile X Clinical Trials of mGluR Antagonists Fail?
Drug Tolerance and Dose Range Problems May Have Been the CulpritsAndy Tranfaglia and his dad, Mike Tranfaglia In my opinion, the Fragile X clinical trials of AFQ056 sponsored by Novartis failed because of a dose range that was inadequate for Fragile X, and because of the unexpected development of tolerance. Dosage problems are relatively easy to correct, but tolerance to the degree we observed may be a kind of fatal flaw, at least if we're talking about mGluR5 antagonists.  The mGluR Theory of Fragile X is still probably correct; it's just that no one (least of all Novartis) expected tolerance to this drug -- indeed, I'm not sure they would agree that's what happened. I think we saw a much better response than most people because our son, Andy, was also on minocycline, effectively augmenting the response, and perhaps delaying the development of tolerance.  This may be a clue to understanding the mechanism of tolerance,Read more

Molecular mechanisms: Enzyme blockers help Fragile X mice

Nice writeup on SFARI.org – Simons Foundation Autism Research Initiative – about Dr. Richard Jope’s research. Dr. Jope won the 2013 FRAXA Pioneer Award for this work. The mood stabilizer lithium and two other drugs that block an enzyme called GSK-3 reverse cognitive deficits in a mouse model of Fragile X. Molecular mechanisms: Enzyme blockers help Fragile X mice — SFARI.org – Simons Foundation Autism Research Initiative

Read more

FRAXA Grants and Fellowships for Fragile X Research – 2014 Priorities

Funding Priorities for 2014 Grant Cycle We anticipate particularly keen competition for funding in this grant cycle. Challenging economic times inevitably force us back to fundamental principles, and so our overall priorities for 2014 grants will be to bring new, high-quality scientists into the Fragile X field, and to promote translational, preclinical, and clinical research with the greatest chance of improving therapeutics for those living with Fragile X. Here are a few key implications of these policies: We want new ideas!  The mGluR Theory is now being tested in the clinic; we do not anticipate funding any major new projects investigating mGluR5 function, although there are many possible spin-off projects which could be the basis for successful applications.  Likewise, we do not assign a high priority to studies of every element of mGluR-coupled signaling pathways, unless the topic of study is an especially druggable target.  Most components of signaling pathways inRead more

FRAXA’s 2014 Top Goals

Complete Phase II/III Clinical Trials of mGluR5 Antagonists – and learn results Currently two large pharmaceutical companies – Novartis and Roche – are conducting large-scale clinical trials of experimental new medications for Fragile X syndrome which target the mGluR5 pathway.  The Novartis trial has finished enrolling adults and adolescents, while a pediatric trial is set to begin soon.  The Roche trial is well on the way to completion as well, but is still enrolling some age groups.  FRAXA has been working diligently to educate families about these trials in the hopes of getting them completed as quickly as possible.  Our goal (of course) is to discover whether these new drugs could be effective treatments for Fragile X, and to see these trials through to marketing of mGluR5 antagonists for Fragile X. Accelerate Clinical Trials of Investigational Treatments, based on research already funded by FRAXA New treatment strategies have emerged and

Read more

New Research Advance: Lithium/GSK3 for Fragile X

New Research Advance: Lithium/GSK3 for Fragile X
Two new papers from FRAXA-funded researcher Dr. Richard Jope demonstrate the potential of GSK3 inhibitors, including the available drug, lithium, to reverse learning deficits in Fragile X. Dr. Jope has previously shown that lithium and other more specific inhibitors of the enzyme Glycogen Synthase Kinase 3 (GSK3) can rescue key symptoms in Fragile X mice. These new publications take that study a step further by showing that lithium (at usual therapeutic doses) and investigational GSK3 inhibitors could reverse a number of cognitive deficits in the mice. The Jope group showed that Fragile X mice are abnormal in novel object recognition, spatial memory, and temporal order memory, and that these GSK3-inhibiting compounds could all reverse these defects, along with associated electrophysiological abnormalities. Furthermore, in the short term, these abnormalities were relatively insensitive to treatment with an mGluR5 antagonist (although other studies suggest that prolonged treatment with mGluR5 antagonists can correct these abnormalities indirectly).Read more

Glycogen Synthase Kinase-3 and Fragile X

Glycogen Synthase Kinase-3 and Fragile X

With $208,000 in funds from FRAXA Research Foundation, Dr. Richard Jope and his team at the University of Miami tested whether newly developed, highly specific inhibitors of GSK3 can reduce behavioral abnormalities in Fragile X mice.

Read more

What Works, and What Doesn’t

At the start, it’s always hard to know what methods will work best for something as complex as the development of disease-modifying treatments for Fragile X. But, we’ve always tried to let the science lead us down the right path. At this point, the results are unequivocal, and they have shaped how we are looking for the Next Great Thing in Fragile X treatments. As a bit of background, it’s worth noting that there are two basic ways of approaching treatment research for any disease: rational drug discovery vs. high-throughput screening. Rational drug discovery means exploring the basic mechanism of disease and identifying specific “treatment targets” that might be expected to correct the underlying problem. Usually, the target is an enzyme (a protein which facilitates biochemical reactions in the cell) or a receptor (a protein, usually on the cell surface, which detects small amounts of a chemical messenger, such asRead more

FRAXA Research Outlook 2012 – Treatment Trials and the Next Wave of New Drugs

Treatment Trials As you probably know, three pharmaceutical companies are conducting clinical trials in Fragile X. Two Swiss giants, Novartis and Roche, are racing to get their lead mGluR5 antagonists to market, and U.S. startup Seaside Therapeutics is pursuing a compound which targets the brain receptor, GABAB. Novartis has large-scale Phase IIb/III trials of the drug AFQ056 well underway. Sites worldwide are enrolling adolescents and adults, with 35 more adults needed and recruitment of adolescents planned through Fall 2012. At this point, some participants have already completed the placebo-controlled trial and are now taking AFQ056, with the option of continuing it until it reaches the market. Novartis is also working toward a trial of AFQ056 for younger children with Fragile X. Roche completed a Phase II trial of its mGluR5 antagonist (currently with the catchy name of RO4917523) last year and is about to commence a larger Phase II trialRead more

Letter from FRAXA’s Medical Director: State of the Science

On the eve of Thanksgiving, we want to thank everyone who has helped bring us so close to available treatments - and to take stock of where we are. by Michael R. Tranfaglia, MD Medical Director and Fragile X Parent Each year, we’ve described ever greater progress toward our ultimate goal: disease-modifying treatments and an ultimate cure for Fragile X. At times it must seem that this quest will take forever; however, the pace of research has truly moved into high gear in 2011! While FRAXA’s mission to find a cure for Fragile X is simple in concept, it is clearly a daunting task. To address the overwhelming complexity of this challenge, we have developed a plan of attack: • We fund high-quality basic research on the causes of Fragile X, which leads to possible treatment strategies (therapeutic targets). • We fund some of the finest neuroscientists in the worldRead more

Clinical Trials Outcome Measures / Lithium Pilot Trial

Clinical Trials Outcome Measures / Lithium Pilot Trial

With a $281,824 grant from FRAXA Research Foundation from 2002-2011, Dr. Berry-Kravis at the Rush University Medical Center attempted to validate a new automated video tracking system for quantifying physical activity as an outcome measure for Fragile X clinical trials.

Read more

Small Molecule Modulators of Lithium for Treatment of Fragile X Syndrome

Small Molecule Modulators of Lithium for Treatment of Fragile X Syndrome

With a $219,500 grant from FRAXA Research Foundation, Dr. Stephen Haggarty from Havard/MIT developed a high-throughput drug screen to find compounds that inhibit GSK3, a critical enzyme in Fragile X. He looked for compounds that can accomplish this either alone or in combination with lithium, offering the possibility of enhancing the effectiveness of lithium as a treatment. His drug screen used patient-specific neural progenitor (NP) cells derived from human induced pluripotent stem cells (iPSCs) – which are created from cells in a skin biopsy from people with Fragile X syndrome (FXS) and other autism spectrum disorders.

Read more

Developing Fragile X Treatments in Fruit Flies and Mice

Developing Fragile X Treatments in Fruit Flies and Mice

With a $380,000 grant from FRAXA Research Foundation from 2005-2009, Drs. Sean McBride, Tom Jogens, and Catherine Choi studied one of the most important aspects of FRAXA’s research; the preclinical validation of potential therapeutic strategies. Many labs have found new leads for treatment. However, very few have the capacity to test new drugs in the mouse model to establish efficacy rigorously enough to lead to clinical trials. The McBride lab (in a broad collaboration with the Choi, Jongens, and Skoulakis groups) aims to do just that. Results published.

Read more

Social Deficits in Fragile X Syndrome: Do Gene-Gene Interactions Play a Role?

Social Deficits in Fragile X Syndrome: Do Gene-Gene Interactions Play a Role?

With a $100,000 grant from FRAXA Research Foundation from 2005-2006, Drs. Jean Lauder and Sheryl Moy at the University of North Carolina looked for gene-gene interactions in Fragile X syndrome.

Read more

Pharmacologic Interventions in the Fmr1 KO Mouse

Pharmacologic Interventions in the Fmr1 KO Mouse

With $48,600 in grants from FRAXA Research Foundation over 2004-2006, Dr. Catherine Choi at Drexel University studied Fragile X knockout mice to determine future treatment targets for Fragile X syndrome in humans.

Read more