Drug Tolerance is Likely Culprit Behind the Failure of MGluR5 Clinical Trials

Drug Tolerance is Likely Culprit Behind the Failure of MGluR5 Clinical Trials

We have long suspected that the clinical trials of mGluR5 blockers from Novartis and Roche failed because the drug triggered tolerance, losing effect over time. With a $90,000 grant from FRAXA, Dr. Patrick McCamphill, a Postdoctoral Fellow in the MIT lab of Dr. Mark Bear, is investigating. He does indeed find tolerance, and now he is looking for ways to overcome it.

Read more

Healx Raises $56M to use AI to Find Treatments for Fragile X & Other Rare Diseases

Healx Raises $56M to use AI to Find Treatments for Fragile X & Other Rare Diseases

Healx has secured $56M in new financing to build a clinical-stage portfolio for rare diseases, including treatments for Fragile X syndrome, and to launch a global Rare Treatment Accelerator program. Where the traditional drug discovery model takes more than a decade and can run into the billions of dollars, Healx’s AI-driven approach makes the process faster, more efficient and cost-effective.

Read more

Screening 2,320 FDA-Approved Drugs for Potential Treatment of Fragile X

Screening 2,320 FDA-Approved Drugs for Potential Treatment of Fragile X

FRAXA Research Foundation has awarded a $90,000 grant to Principal Investigator Dr. Sean McBride and Postdoctoral Fellow Dr. Karen Joyce, at Rowan University, to screen all 2,320 FDA-approved drugs on both mouse and fly models of Fragile X syndrome. Those drugs which show promise will be tested in more detail for potential to treat Fragile X in humans.

Read more

Pharmacological Tolerance in the Treatment of Fragile X Syndrome

Pharmacological Tolerance in the Treatment of Fragile X Syndrome

With a $90,000 grant from FRAXA Research Foundation over 2018-2019, Dr. Patrick McCamphill, postdoctoral fellow in Dr. Mark Bear’s lab at Massachusetts Institute of Technology (MIT), is investigating drug tolerance to mGluR5 antagonists, arbaclofen, and other potential Fragile X treatments. He is also exploring ways to overcome it.

Read more

Repurposing Available Drugs to Treat Fragile X Syndrome – FRAXA Initiatives

Repurposing Available Drugs to Treat Fragile X Syndrome – FRAXA Initiatives
FRAXA Research Foundation was founded in 1994 to fund biomedical research aimed at finding a cure for Fragile X syndrome and, ultimately, autism. We prioritize translational research with the potential to lead to improved treatments for Fragile X in the near term. Our early efforts involved supporting a great deal of basic neuroscience to understand the cause of Fragile X. By 1996, these efforts had already begun to yield results useful for drug repurposing. To date, FRAXA has funded well over $25 million in research, with over $3 million of that for repurposing existing drugs for Fragile X. Here are some examples of FRAXA-funded work on repurposing available drugs for Fragile X syndrome: Lithium In the mid-1990s, the Greenough lab at the University of Illinois discovered that FMRP, the protein missing in Fragile X, is rapidly translated in dendrites in response to stimulation of glutamate receptors. FRAXA funded preclinical validation of this discovery in theRead more

NIH Investigator Carolyn Beebe Smith, PhD, Looks to Improve Sleep in Fragile X Syndrome

NIH Investigator Carolyn Beebe Smith, PhD, Looks to Improve Sleep in Fragile X Syndrome
Our sons with Fragile X Syndrome typically go to bed early and rise early. Sometimes they jump on us while we are sleeping at 3 a.m., excited to start their day. For heaven’s sake, whY, wHY, WHY? The answer may come from Carolyn Beebe Smith, PhD, senior investigator, Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland. She is studying why children, in particularly boys, with FXS have problems sleeping. “We know sleep is important for many aspects of brain function,” said Dr. Smith, who received a PhD from the University of London where she studied the chemical pathology of Alzheimer’s for which she was awarded the Queen Square Prize. “In studies of healthy mice, we have shown restricted sleep during brain development can result in long-lasting changes in behavior. We are interested in understanding if sleep problems contribute to severity ofRead more

Fruit Flies to Model and Test Fragile X Treatments

Fruit Flies to Model and Test Fragile X Treatments

Dr. Jongens and his collaborators have found an insulin-like protein in the fly brain that is overexpressed in the Fragile X mutant fly, leading to increased activity of the insulin signaling pathway. Furthermore, they found that certain behavioral patterns in the Fragile X flies can be rescued by expressing the FX gene just in insulin producing neurons in the fly brain. In the mutant, there are other changes in the signaling pathways, including a decrease in cAMP and elevation in PI3K, mTOR, Akt and ERK activity. They now propose to study 2 medicines used for diabetes: pioglitazone (increases cAMP and decreases Akt and ERK) and metformin (inhibits mTOR), in flies and mice to validate the potential efficacy of these novel therapeutics for Fragile X.

Read more

Molecular mechanisms: Enzyme blockers help Fragile X mice

Nice writeup on SFARI.org – Simons Foundation Autism Research Initiative – about Dr. Richard Jope’s research. Dr. Jope won the 2013 FRAXA Pioneer Award for this work. The mood stabilizer lithium and two other drugs that block an enzyme called GSK-3 reverse cognitive deficits in a mouse model of Fragile X. Molecular mechanisms: Enzyme blockers help Fragile X mice — SFARI.org – Simons Foundation Autism Research Initiative

Read more

Glycogen Synthase Kinase-3 (GSK3), Lithium and Fragile X

Glycogen Synthase Kinase-3 (GSK3), Lithium and Fragile X

With $208,000 in funds from FRAXA Research Foundation, Dr. Richard Jope and his team at the University of Miami tested whether newly developed, highly specific inhibitors of GSK3 can reduce behavioral abnormalities in Fragile X mice.

Read more

What Works, and What Doesn’t

At the start, it’s always hard to know what methods will work best for something as complex as the development of disease-modifying treatments for Fragile X. But, we’ve always tried to let the science lead us down the right path. At this point, the results are unequivocal, and they have shaped how we are looking for the Next Great Thing in Fragile X treatments. As a bit of background, it’s worth noting that there are two basic ways of approaching treatment research for any disease: rational drug discovery vs. high-throughput screening. Rational drug discovery means exploring the basic mechanism of disease and identifying specific “treatment targets” that might be expected to correct the underlying problem. Usually, the target is an enzyme (a protein which facilitates biochemical reactions in the cell) or a receptor (a protein, usually on the cell surface, which detects small amounts of a chemical messenger, such asRead more

Clinical Trials Outcome Measures / Lithium Pilot Trial

Clinical Trials Outcome Measures / Lithium Pilot Trial

With a $281,824 grant from FRAXA Research Foundation from 2002-2011, Dr. Berry-Kravis at the Rush University Medical Center attempted to validate a new automated video tracking system for quantifying physical activity as an outcome measure for Fragile X clinical trials.

Read more

Small Molecule Modulators of Lithium for Treatment of Fragile X Syndrome

Small Molecule Modulators of Lithium for Treatment of Fragile X Syndrome

With a $219,500 grant from FRAXA Research Foundation, Dr. Stephen Haggarty from Havard/MIT developed a high-throughput drug screen to find compounds that inhibit GSK3, a critical enzyme in Fragile X. He looked for compounds that can accomplish this either alone or in combination with lithium, offering the possibility of enhancing the effectiveness of lithium as a treatment. His drug screen used patient-specific neural progenitor (NP) cells derived from human induced pluripotent stem cells (iPSCs) – which are created from cells in a skin biopsy from people with Fragile X syndrome (FXS) and other autism spectrum disorders.

Read more

Developing Fragile X Treatments in Fruit Flies and Mice

Developing Fragile X Treatments in Fruit Flies and Mice

With a $380,000 grant from FRAXA Research Foundation from 2005-2009, Drs. Sean McBride, Tom Jogens, and Catherine Choi studied one of the most important aspects of FRAXA’s research; the preclinical validation of potential therapeutic strategies. Many labs have found new leads for treatment. However, very few have the capacity to test new drugs in the mouse model to establish efficacy rigorously enough to lead to clinical trials. The McBride lab (in a broad collaboration with the Choi, Jongens, and Skoulakis groups) aims to do just that. Results published.

Read more

Social Deficits in Fragile X Syndrome: Do Gene-Gene Interactions Play a Role?

Social Deficits in Fragile X Syndrome: Do Gene-Gene Interactions Play a Role?

With a $100,000 grant from FRAXA Research Foundation from 2005-2006, Drs. Jean Lauder and Sheryl Moy at the University of North Carolina looked for gene-gene interactions in Fragile X syndrome.

Read more

Pharmacologic Interventions in the Fmr1 KO Mouse

Pharmacologic Interventions in the Fmr1 KO Mouse

With $48,600 in grants from FRAXA Research Foundation over 2004-2006, Dr. Catherine Choi at Drexel University studied Fragile X knockout mice to determine future treatment targets for Fragile X syndrome in humans.

Read more