Aberrant Insulin Signaling in a Mouse Model of Fragile X

Aberrant Insulin Signaling in a Mouse Model of Fragile X

This 2017-2018 grant of $90,000 is funded jointly by FRAXA and the Fragile X Research Foundation of Canada for the first year. A previous FRAXA grant to the Sonenberg lab has led to great interest in the available drug, metformin, as a potential treatment for Fragile X syndrome. FRAXA is currently organizing clinical trials of metformin.

Read more

Takeaways from Fragile X Advocacy Day

Takeaways from Fragile X Advocacy Day

In the first week of March I attended my first Fragile X Advocacy Day to meet with many of the Massachusetts delegation to Congress. While this was my first time advocating for Fragile X research, I’ve been a longtime lung cancer research advocate and have met with many of the same representatives in the past. It was a pleasure to meet with many of the families as my participation in Advocacy Day was in the spirit of “we are all in this together”.

Read more

Impact of the Fragile X Community

Impact of the Fragile X Community

At FRAXA Research Foundation, we are truly grateful for our Fragile X community and thousands of donors. We couldn’t keep moving the ball forward in research without your support. Each year FRAXA invests over $1 million in Fragile X research thanks to your support. Because we supported these three researchers, we were able to secure another $35 million in research aimed at identifying clinical trial outcome measures that will lead to human trials of promising treatments for those affected by Fragile X.

Read more

Metformin, Diabetes Drug, Potential Fragile X Treatment

Metformin, Diabetes Drug, Potential Fragile X Treatment

“We treated mice with metformin and corrected all the core Fragile X deficits. We are optimistic about using metformin in human clinical trials. This is a generic drug with few side effects” says Nahum Sonenberg, PhD, James McGill Professor, Department of Biochemistry, McGill Cancer Center, McGill University.

Read more

Bryostatin Restores Learning and Memory in Adult Fragile X Mice

Bryostatin Restores Learning and Memory in Adult Fragile X Mice
Just as the Amazon rainforest may hold a cure for cancer if only scientists can find it, a bizarre marine critter found off the California coast — Bugula neritina— is the only known source of a potential new Fragile X treatment, Bryostatin. Last month, FRAXA sat down with scientists from Neurotrope BioScience, a specialty biopharmaceutical company developing medicines for rare diseases and Alzheimer’s based on Bryostatin. Their Fragile X program is based on research by a West Virginia team led by Daniel Alkon, MD, which showed that Bryostatin-1 restores hippocampal synapses and spatial learning and memory in adult Fragile X mice. “Our results show that synaptic and cognitive function of adult FXS mice can be normalized through pharmacologic treatment and that bryostatin-1-like agents may represent a novel class of drugs to treat Fragile X mental retardation even after postpartum brain development has largely completed,” remarked Dr. Alkon. Bugula and Bryostatins Often mistaken for seaweed, bugula is actually colonies of small animals, likeRead more

FRAXA Grants and Fellowships for Fragile X Research – 2014 Priorities

Funding Priorities for 2014 Grant Cycle We anticipate particularly keen competition for funding in this grant cycle. Challenging economic times inevitably force us back to fundamental principles, and so our overall priorities for 2014 grants will be to bring new, high-quality scientists into the Fragile X field, and to promote translational, preclinical, and clinical research with the greatest chance of improving therapeutics for those living with Fragile X. Here are a few key implications of these policies: We want new ideas!  The mGluR Theory is now being tested in the clinic; we do not anticipate funding any major new projects investigating mGluR5 function, although there are many possible spin-off projects which could be the basis for successful applications.  Likewise, we do not assign a high priority to studies of every element of mGluR-coupled signaling pathways, unless the topic of study is an especially druggable target.  Most components of signaling pathways inRead more

Fragile X Syndrome Protein Linked to Breast Cancer Progression

Having Fragile X Syndrome May Protect Against Breast Cancer Claudia Bagni (VIB/KU Leuven, Belgium, and the University of Rome, Italy) and colleagues have identified the way Fragile X Mental Retardation Protein or FMRP contributes to the progression of breast cancer. The researchers demonstrated that FMRP acts as a master switch controlling the levels of several proteins involved in different stages of aggressive breast cancer, including the invasion of cancer cells into blood vessels and the spread of these cancer cells to other tissues forming metastasis. The work is published online in EMBO Molecular Medicine. The authors identified high levels of FMRP in human breast cancer tissue microarrays and also examined the effects of FMRP levels in a mouse model to study breast cancer. In these mice, high levels of FMRP in primary breast cancer tumors were also linked to the spread of the cancer to the lungs and the developmentRead more

What Works, and What Doesn’t

At the start, it’s always hard to know what methods will work best for something as complex as the development of disease-modifying treatments for Fragile X. But, we’ve always tried to let the science lead us down the right path. At this point, the results are unequivocal, and they have shaped how we are looking for the Next Great Thing in Fragile X treatments. As a bit of background, it’s worth noting that there are two basic ways of approaching treatment research for any disease: rational drug discovery vs. high-throughput screening. Rational drug discovery means exploring the basic mechanism of disease and identifying specific “treatment targets” that might be expected to correct the underlying problem. Usually, the target is an enzyme (a protein which facilitates biochemical reactions in the cell) or a receptor (a protein, usually on the cell surface, which detects small amounts of a chemical messenger, such asRead more

Genetic and Pharmacologic Manipulation of PI3K Activity in FXS: Assessing Potential Therapeutic Value

Genetic and Pharmacologic Manipulation of PI3K Activity in FXS: Assessing Potential Therapeutic Value

With a $90,000 grant from the FRAXA Research Foundation, Dr. Gary Bassell and his team at Emory University explored the PI3K/mTOR signaling complex in FXS via genetic and pharmacologic rescue approaches, to reduce the enzymatic function of specific components of this complex pathway in an FXS mouse model.

Read more

FMR1 Repression and the Signals to Chromatin

FMR1 Repression and the Signals to Chromatin

With a $70,000 grant from FRAXA Research Foundation from 2001-2003, Dr. Assam El-Osta and his team at the Peter MacCallum Cancer Institute studied mechanisms of methylation dependent silencing of FMR1, as well as regulation by histone acetylation/deacetylation.

Read more

Prospects For Gene Therapy in the Fragile X

With a $90,000 grant from FRAXA Research Foundation from 2000-2002, Dr. Mario Rattazzi at the New York State Institute for Basic Research explored gene therapy: ways to transfer the FMR1 gene across the blood-brain-barrier in normal rats and mice, and then in FMR1 knockout mice. Results published.

Read more