Students at WPI helping FRAXA Research Foundation

Fragile X Student teams at WPI help FRAXA Research Foundation

Undergraduate students at Worcester Polytechnic Institute (WPI) complete what is known as the Interactive Qualifying Project (IQP). Student groups work closely with local or national sponsors during their junior year to complete a project that benefits their community. Two student groups from WPI are working with FRAXA to provide research-based improvements to the FRAXA.org website, and to develop a mobile FRAXA app.

Read more

NIH Awards $35 Million to Three Fragile X Research Teams

Kimberly Huber, Ph.D., FRAXA Investigator

The National Institutes of Health has just announced new awards of $35 million over five years to support three Centers for Collaborative Research in Fragile X. Investigators at these centers will seek to better understand Fragile X-associated disorders and work toward developing effective treatments. All of these scientists have been funded for years by FRAXA Research Foundation, and now each team will receive over $2 million per year for five years!

Read more

Computational Analysis of Neural Circuit Disruption in Fragile X Model Mice

Computer modeling of the brain offers the hope of predicting how the brain responds to varying conditions, but these models have been rather primitive until recently. The Sejnowski team at the Salk Institute, who specialize in computational models of neural networks, will take the results of previous FRAXA-funded projects and incorporate them into their advanced computer models of brain function.

Read more

Bcl-xL Inhibition as a Therapeutic Strategy for Fragile X Syndrome

Scientists have found increases in the numbers of neurons in brain regions of autistic children, suggesting a problem in developmental programmed cell death pathways. One of the most important effectors of neuronal survival during brain development is the “anti-cell death” protein Bcl-xL. While the normal function of Bcl-xL is to maintain a healthy number of neurons and synapses, over-expressed Bcl-xL can cause an overabundance of synaptic connections. This may be happening in Fragile X.

Read more

Novartis Discontinues Development of mavoglurant (AFQ056) for Fragile X Syndrome

Novartis has announced that the company will be discontinuing its development program in Fragile X for its lead mGluR5 antagonist, mavoglurant (AFQ056), following negative results in a large international clinical trial in adults (reported in the Fall of 2013) and most recently, in a trial in adolescents. In both placebo-controlled trials, patients taking mavoglurant did not show improvement over placebo in any outcome measures. Novartis has also announced that the current open-label extension phase of the trial will be closed, but patients will be allowed to continue on the medication until their next scheduled clinic visit, or August 29, whichever comes first.

Read more

New Clue to Fragile X and Autism Found Inside Brain Cells

Researchers led by Dr. Karen O’Malley at Washington University School of Medicine in St. Louis have published results of their work on mGluR5 and Fragile X syndrome. FRAXA Research Foundation provided funding for this work from 2009 until 2013. Pharmaceutical companies have developed therapeutic compounds to decrease signaling associated with the mGlu5 receptor, moderating its effects on brain cells’ volume knobs. But the compounds were designed to target mGlu5 surface receptors. In light of the new findings, the scientists question if those drugs will reach the receptors inside cells.

Read more

Scientists Uncover Trigger for Fragile X Syndrome

Samie Jaffrey, PhD, at Weill Medical College of Cornell University, FRAXA research grant

A new study led by Weill Cornell Medical College scientists shows that Fragile X syndrome occurs because of a mechanism that shuts off the gene associated with the disease. The findings, published today in Science, also show that a compound that blocks this silencing mechanism can prevent Fragile X syndrome – suggesting a similar therapy may be possible for 20 other diseases that range from mental retardation to multisystem failure.

Read more

Small Molecules To Target r(CGG) Expansions to Treat Fragile X Syndrome

With a 2-year, $90,000 grant from FRAXA Research Foundation, Dr.’s Matthew Disney and Wang-Yong Yang worked to correct the underlying problem in Fragile X: the silencing of the Fragile X gene (FMR1) and the resulting lack of FMRP (Fragile X Mental Retardation Protein). Their approach was to use novel small molecules to target the abnormal CGG repeats before the FMR1 gene.

Read more

Potassium Channel Modulators to Treat Fragile X

With $246,000 in funding from FRAXA over 2012-2014, the Yale University team of Leonard Kaczmarek, PhD, showed that loss of FMRP leads to an increased Kv3.1 potassium currents and decreased Slack potassium currents in neurons. Both of these changes impair timing of action potentials in auditory neurons (and likely others throughout the brain). The team also found that the firing pattern of neurons in response to repeated stimulation is severely abnormal in Fragile X mice. Based on these results, they are collaborating with the UK-based company Autifony to develop and test advanced compounds which may reverse these deficits.

Read more

This Is My Brother, speech by Elizabeth Clark at FRAXA’s Fall X Ball

Elizabeth Higgins Clark

In a heartfelt, humorous and insightful speech, Elizabeth Higgins Clark imparts the inspiration and love she has received from her brother, David, who has Fragile X Syndrome. Fragile X is the most common form of genetically transferred intellectual disability. Clark gave the following speech in Danbury, Connecticut at the 11th Annual Fall X Ball benefitting the FRAXA Research Foundation.

Read more

Fragile X Syndrome Protein Linked to Breast Cancer Progression

Claudia Bagni (VIB/KU Leuven, Belgium, and the University of Rome, Italy) and colleagues have identified the way Fragile X Mental Retardation Protein or FMRP contributes to the progression of breast cancer. The researchers demonstrated that FMRP acts as a master switch controlling the levels of several proteins involved in different stages of aggressive breast cancer, including the invasion of cancer cells into blood vessels and the spread of these cancer cells to other tissues forming metastasis.

Read more

Social Behavior as an Outcome Measure for Fragile X Clinical Trials

One of the features of the Fragile X mouse model which is relevant to the human Fragile X syndrome (and autism) is social behavior. Several tests show consistent social behavioral abnormalities in the Fragile X mouse model. With a $140,000 grant from FRAXA Research Foundation in 2012-2013, Dr. Willemsen at Erasmus University used social behavior tests to measure the effectiveness of several drug strategies.

Read more

Development of a Novel GABA-A Agonist in Fragile X Syndrome

Tori Shaeffer

Of the many genes known to be regulated by FMRP, the gamma-aminobutyric acid receptor A (GABA(A)), is gaining attention as a potential target for the treatment of FXS. Mounting evidence suggests decreased expression and functioning of GABA(A) is involved in the pathophysiology of FXS. Non-selective GABA(A) agonism in animal models of FXS has been associated with normalization of morphological features, GABA(A) expression, and behavior. However, the clinical use of these agents in Fragile X is associated with unwanted side-effects, such as sedation, dulling of cognition, and occasional paradoxical agitation, which limits their use.

Read more

Matrix Metalloproteinase Therapeutic Treatments for Fragile X Syndrome

Kendal Broadie

With a $157,000 grant from the FRAXA Research Foundation in 2012-2013, Dr. Kendal Broadie and Dr. Cheryl Gatto worked to define the distinct but also overlapping roles for MMP-1 and MMP-2 in synaptic structural and functional development. In drug studies with Fragile X fruit flies, they will be testing a range of MMPIs in drug treatments to compare effectiveness during development and at maturity, in order to define the contributions of FXS developmental impairments and adult recovery/plasticity.

Read more