Targeting Adiponectin to Treat Fragile X Syndrome

Targeting Adiponectin to Treat Fragile X Syndrome

FRAXA Research Foundation has awarded a $30,000 research grant to principal investigator Brian Christie, PhD, and postdoctoral fellows Jonathan Thacker, PhD, and Luis Bettio, PhD, at the University of Victoria. They are investigating whether boosting the hormone adiponectin can effectively treat Fragile X syndrome. This project is funded in partnership with the Fragile X Research Foundation of Canada, which is providing an additional $15,000.

Read more

Targeting AMP-Activated Protein Kinase Pathway in Fragile X Syndrome

Targeting AMP-Activated Protein Kinase Pathway in Fragile X Syndrome

With a $100,000 grant from the FRAXA Research Foundation in 2015, Dr. Peter Vanderklish explored a novel strategy to treat Fragile X syndrome: AMPK activators. The good news is that there are FDA approved (for example, metformin) and naturally occurring AMPK activators (such as resveratrol, found in red wine).

Read more

Fruit Flies to Model and Test Fragile X Treatments

Fruit Flies to Model and Test Fragile X Treatments

Dr. Jongens and his collaborators have found an insulin-like protein in the fly brain that is overexpressed in the Fragile X mutant fly, leading to increased activity of the insulin signaling pathway. Furthermore, they found that certain behavioral patterns in the Fragile X flies can be rescued by expressing the FX gene just in insulin producing neurons in the fly brain. In the mutant, there are other changes in the signaling pathways, including a decrease in cAMP and elevation in PI3K, mTOR, Akt and ERK activity. They now propose to study 2 medicines used for diabetes: pioglitazone (increases cAMP and decreases Akt and ERK) and metformin (inhibits mTOR), in flies and mice to validate the potential efficacy of these novel therapeutics for Fragile X.

Read more

Phase 1 Clinical Trial of Mega Green Tea Extract in Fragile X Syndrome

Phase 1 Clinical Trial of Mega Green Tea Extract in Fragile X Syndrome

With a $124,000 grant from the FRAXA Research Foundation from 2012-2014, Dr. Mara Dierssen and Dr. Rafael de la Torre conducted preclinical studies in Fragile X knockout mice and a clinical trial in Fragile X patients using Mega Green Tea Extract, which contains 45% by weight epigallocatechin gallate (EGCG).

Read more

Fragile X Syndrome Treatment Target: MMP-9

Fragile X Syndrome Treatment Target: MMP-9
A major article from the Ethell lab at UC Riverside has shown the therapeutic potential of drugs that inhibit the enzyme MMP-9. A nice lay description of the new paper is here and the abstract of the article is here.  Dr. Ethell was awarded FRAXA Research Foundation funding from 2008-2011 and 2012-present. This latest work shows that human Fragile X tissues have elevated levels of the extracellular enzyme MMP-9, as well as an increase in the active fraction of that protein (like most enzymes, MMP-9 can exist in an inactive form which can be switched on rapidly; this kind of regulation is important in most biological pathways.) The Ethell lab also showed that genetic reduction of MMP-9 rescues most Fragile X phenotypes in the mouse model. Previous work had shown that inhibition of MMP-9 with minocycline also had similar effects, but minocycline has many different actions. These experiments demonstrate conclusively that MMP-9 inhibition is the activeRead more

The mTOR Pathway in Fragile X Syndrome

With a $90,000 grant from FRAXA Research Foundation over 2012-2013, Dr. Eric Klann and Postdoctoral Fellow Dr. Aditi Bhattacharrya of New York University investigated alterations in the mTOR pathway in Fragile X syndrome. Eric Klann, PhD Principal Investigator Aditi Bhattacharya, PhD Postdoctoral Fellow New York University 2012 FRAXA Research Grant $90,000 over 2 Years This team examined the mTor pathway in Fragile X – which is also known to be defective in several forms of autism. Their work was published in September 2012 and received international attention. A new method – genetically reducing S6K1 – has reduced several social, behavioral, and physical problems associated with Fragile X syndrome in mice. “We think these results set the stage for a viable pharmacological approach to target S6K1, with the aim of diminishing or even reversing the afflictions associated with Fragile X syndrome,” says Eric Klann. See NYU press release Previous FRAXA Awards to the Klann Lab: $45,000Read more

Genetic and Pharmacologic Manipulation of PI3K Activity in FXS: Assessing Potential Therapeutic Value

Genetic and Pharmacologic Manipulation of PI3K Activity in FXS: Assessing Potential Therapeutic Value

With a $90,000 grant from the FRAXA Research Foundation, Dr. Gary Bassell and his team at Emory University explored the PI3K/mTOR signaling complex in FXS via genetic and pharmacologic rescue approaches, to reduce the enzymatic function of specific components of this complex pathway in an FXS mouse model.

Read more