Small Rho GTPases, a Potential Therapeutic Target for Fragile X Syndrome

Small Rho GTPases, a Potential Therapeutic Target for Fragile X Syndrome

With $384,345 in grants from FRAXA Research Foundation, Dr. MariVi Tejada from the University of Houston focused on a particularly promising point of intervention in pathways of brain receptors, and tested several potential therapeutic compounds in an attempt to rescue function in the mouse model of Fragile X.

Read more

Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome

Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome

With a $90,000 grant from FRAXA Research Foundation, Dr. Kimberly Huber and Dr. Weirui Guo at the University of Texas at Soutnwestern investigated the roles of Homer and CaMKII in Fragile X syndrome.

Read more

Ab-Mediated Translation in Fragile X Syndrome

Ab-Mediated Translation in Fragile X Syndrome

With a $120,000 grant from FRAXA Research Foundation during 2011-2012, Dr. Cara Westmark at the University of Wisconsin explored the role of AbPP as a potential treatment option for fragile X. AbPP produces b-amyloid which is over-expressed in Alzheimer’s disease (AD) and Down syndrome. 

Read more

What Works, and What Doesn’t

At the start, it’s always hard to know what methods will work best for something as complex as the development of disease-modifying treatments for Fragile X. But, we’ve always tried to let the science lead us down the right path. At this point, the results are unequivocal, and they have shaped how we are looking for the Next Great Thing in Fragile X treatments. As a bit of background, it’s worth noting that there are two basic ways of approaching treatment research for any disease: rational drug discovery vs. high-throughput screening. Rational drug discovery means exploring the basic mechanism of disease and identifying specific “treatment targets” that might be expected to correct the underlying problem. Usually, the target is an enzyme (a protein which facilitates biochemical reactions in the cell) or a receptor (a protein, usually on the cell surface, which detects small amounts of a chemical messenger, such asRead more

Reward Function in Fragile X Syndrome

Reward Function in Fragile X Syndrome

With a $82,500 grant from FRAXA Research Foundation in 2011-2012, Dr. Christopher Cowan and Dr. Laura Smith explored the role of specific signaling pathways in drug-related behavioral deficits, including determining the role, if any, of known impairments in the Fragile X brain.

Read more

A Metabolomic Drug Efficacy Index to Test Treatments in the Fragile X Mouse

A Metabolomic Drug Efficacy Index to Test Treatments in the Fragile X Mouse

Dr. Davidovic has been examining changes in metabolism in various brain regions that are affected in Fragile X patients. She has defined a brain-specific metabolic signature of FXS and is testing treatment strategies to restore normal levels of these metabolites.

Read more

Compound that Inhibits mGluR5 Corrects Signs of Fragile X in Adult Mice

A study finds that a new compound reverses many of the major symptoms associated with Fragile X syndrome (FXS). The paper is published in the April 12 issue of the journal Neuron, describes the exciting observation that the FXS correction can occur in adult mice, after the symptoms of the condition have already been established. Previous research has suggested that inhibition of mGlu5, a subtype of receptor for the excitatory neurotransmitter glutamate, may ameliorate many of the major symptoms of the disease. This study, a collaboration between a group at Roche in Switzerland, led by Dr. Lothar Lindemann, and Dr. Mark Bear’s MIT lab, used an mGlu5 inhibitor called CTEP to examine whether inhibition of mGlu5 could reverse FXS symptoms. The researchers gave CTEP to mice which model Fragile X. "We found that even when treatment with CTEP was started in adult mice, it reduced a wide range of FXSRead more

Role of JNK in FMRP Regulated Translation in Fragile X Syndrome

Role of JNK in FMRP Regulated Translation in Fragile X Syndrome

With a $90,000 grant from FRAXA Research Foundation over 2 years, Dr. Michael Wilhelm and his team at the University of Wisconsin studied a protein known as JNK, which is observed to be abnormally regulated in Fragile X. Like FMRP, it is involved in regulating dendritic protein synthesis, and so it may be a target for drug therapy in Fragile X.

Read more

Role of Excessive Protein Synthesis in the Ontogeny of FXS

Role of Excessive Protein Synthesis in the Ontogeny of FXS

With a $90,000 grant from FRAXA Research Foundation in 2010-2011, Dr. Mark Bear and Dr. Miquel Bosch tested the simple hypothesis that the excessive rate of protein synthesis is not a consequence but the primary cause of the structural alterations occurring in Fragile X syndrome.

Read more

Clinical Trials Outcome Measures / Lithium Pilot Trial

Clinical Trials Outcome Measures / Lithium Pilot Trial

With a $281,824 grant from FRAXA Research Foundation from 2002-2011, Dr. Berry-Kravis at the Rush University Medical Center attempted to validate a new automated video tracking system for quantifying physical activity as an outcome measure for Fragile X clinical trials.

Read more

Manipulating Basal and mGluR-Stimulated cAMP Level in FXS Model Mice

Manipulating Basal and mGluR-Stimulated cAMP Level in FXS Model Mice

With a $90,000 grant from FRAXA Research Foundation, Dr. Hongbing Wang’s team from Michigan State University looked at a treatment target “downstream” of the mGluR5 called cyclic AMP (cAMP). Levels of cAMP are lower in FXS patients and animal models, suggesting that it plays a role in FXS. Drugs that raise levels of cAMP may effectively treat Fragile X. We are very pleased to report that, in 2012, Dr. Wang received a 5-year, $250,000 per year R01 grant from NIH to continue this promising research.

Read more

The Role of FMRP and Small, Non-Coding RNAs in Translation

The Role of FMRP and Small, Non-Coding RNAs in Translation

With a $120,000 grant from FRAXA Research Foundation, Drs. Henri Tiedge and Jun Zhong studied the mechanisms by which local protein translation is repressed. Multiple parallel mechanisms keep protein synthesis in check; one of them involves FMRP, and a similar mechanism involves the non-coding RNA, BC1. Results published.

Read more

Results of First Fenobam Trial in Adults with Fragile X Published

Results of First trial of Fenobam in Adults with Fragile X Published in Major Journal We are pleased to announce the publication of positive results of a Phase IIa clinical trial of fenobam in Fragile X. Fenobam belongs to a class of compounds known as mGluR5 antagonists. Neuropharm, a specialty pharmaceutical company based in the U.K., received Orphan Drug Designation in the US in 2006 for fenobam in the treatment of Fragile X, after acquiring rights to relevant data on the compound from FRAXA. This trial was conducted in the US by Drs. Randi Hagerman of the UC Davis MIND Institute and Elizabeth Berry-Kravis of the RUSH University Medical Center, and initial results were first announced last summer. Their article in the Journal of Medical Genetics can be accessed free at: http://jmg.bmj.com/cgi/rapidpdf/jmg.2008.063701v1 Highlights of the Study: 1. This was a single dose open label study of fenobam in 6 maleRead more

Understanding the Mechanism of mGluR5 in Fragile X Mouse Models

Understanding the Mechanism of mGluR5 in Fragile X Mouse Models

With $184,000 in funding from FRAXA Research Foundation from 1996-2005, Dr. Ben Oostra and his team at Erasmus University have done multiple studies related to Fragile X syndrome. This lab created the first Fragile X mouse models and went on to perform many critical studies in Fragile X mouse models. Results published.

Read more

The miRNA Pathway in Fragile X Syndrome

With a $120,000 grant from FRAXA Research Foundation over 2008-2009, Drs. Oostra and deVrij at Erasmus University studied miRNA and Fragile X. miRNAs are RNAs that can repress the translation of target mRNAs – therefore they can play a role in protein synthesis within the neuron. Preliminary results showed large differences in miRNA expression in the Fragile X mouse brain compared to the wild type. This lab investigated the effect of mGluR5 antagonists on the levels of these specific miRNAs.

Read more

Imaging Synaptic Structure and Function in Fragile X Mice

Imaging Synaptic Structure and Function in Fragile X Mice

With in $150,000 grants from FRAXA Research Foundation over 2005-2009, Dr. Carlos Portera-Cailliau studied intact, anesthetized Fragile X mouse brains, looking for defects in the density, length, or dynamics of the dendrites. They looked for changes in the neurons after treatment with mGluR5 antagonists.

Read more

3 Researchers Honored at FRAXA Investigators Meeting

Three Researchers Honored at FRAXA 2008 Investigators Meeting Over 150 scientists from around the globe gathered in Durham, New Hampshire, for FRAXA Research Foundation's Investigators Meeting on September 21-24, 2008. They came from Australia, Canada, India, Turkey, the U.S., and eight European countries. Their common goal: "to share, collaborate and publish," in the words of FRAXA's Medical Director, Michael Tranfaglia, MD, to find effective treatments and a cure for Fragile X, the foremost inherited cause of mental retardation and autism. Most of the attendees were university-based professors, postdoctoral fellows, and graduate students who have FRAXA research grants. Also participating in the meeting were scientists from the National Institutes of Health (NIMH, NICHD, and NINDS), Neuropharm Group PLC, Hoffman LaRoche Inc., GlaxoSmithKline, Indevus, and Seaside Therapeutics, as well as 20 parents of Fragile X children. At the opening reception, FRAXA honored three investigators for taking extraordinary steps to advance research: FRAXARead more

Pilot Trial of Minocycline in Fragile X

With a $40,000 grant from FRAXA, Dr. Carlo Paribello and his team at the Surrey Place Centre Fragile X clinic in Toronto, Ontario, ran an open label trial to see if minocycline can improve learning and reduce anxiety and behavioral problems in people with Fragile X. Twenty participants between the ages of 13 and 35 years take minocycline for two months.

Read more

Glutamate Metabolism in Fragile X Mouse Brain

Glutamate Metabolism in Fragile X Mouse Brain

With a $95,000 grant from FRAXA Research Foundation over 2 years, Mary McKenna at the University of Maryland studied the role of metabotropic glutamate receptors (mGluR) and how they affect other cells and pathways.

Read more

Using Fenobam to Reduce APP and Abeta in Fragile X Mice

Using Fenobam to Reduce APP and Abeta in Fragile X Mice

With a $130,000 grant from FRAXA Research Foundation over 2008-2008, Drs. James Malter and Cara Westmark at the University of Wisconsin studied the relationship between the Fragile X protein FMRP and APP, a protein important to the pathology of Alzheimer’s Disease. APP may also contribute to the pathology of Fragile X, and its major metabolite, Aß, may contribute to abnormal protein synthesis via a positive feedback loop. This project sought to restore normal dendritic protein synthesis in Fragile X mice by breaking into this loop.

Read more

AMPAkines and BDNF in Fragile X: UCI Researchers Restore Memory Process in Fragile X

AMPAkines and BDNF in Fragile X: UCI Researchers Restore Memory Process in Fragile X

With a $104,498 grant from FRAXA Research Foundation from 2003-2008, Dr. Julie Lauterborn at the University of California has done several studies on dentritic spines and finding treatment targets for memory retention in Fragile X mice.

Read more

Targeting the Role of Group 1 Metabotropic Glutamate Receptors

Targeting the Role of Group 1 Metabotropic Glutamate Receptors

With a $40,000 grant from FRAXA Research Foundation in 2008, Dr. Huibert Mansvelder and his team at the University of Amsterdam studied the role of different receptors and their reactions to drug compounds.

Read more

FRAXA Contributes $10,000 to NIH grant to Seaside Therapeutics

FRAXA Contributes $10,000 to NIH grant to Seaside Therapeutics
Randy Carpenter, MD Principal Investigator with Mark Bear, PhD, MIT Co-Investigator (2007)   Clinical development of mGluR5 Antagonists to Treat Fragile X Syndrome and Autism Seaside Therapeutics received a major grant from the NIH, with additional funding from FRAXA and Cure Autism Now (CAN) to develop STX107, a selective mGluR5 antagonist, as a treatment for Fragile X. Unfortunately Seaside has since discontinued development of STX107.Read more

Decreased Excitatory Drive onto Parvalbumin-Positive Neocortical Inhibitory Neurons in a Mouse Model of Fragile X Syndrome

Decreased Excitatory Drive onto Parvalbumin-Positive Neocortical Inhibitory Neurons in a Mouse Model of Fragile X Syndrome

With an $80,000 grant from FRAXA Research Foundation over 2006-7, Drs. Jay Gibson and Kimberly Huber at the University of Texas at Southwestern examined if the defected inhibitory neurotransmission was a primary or secondary symptom of Fragile X to determine where future treatment targets should be focused.

Read more

Electrophysiological, Biochemical and Immunohistochemical Characterization of Kv3.1 in Auditory Brainstem Nuclei in the Fragile X Knockout Mouse

Electrophysiological, Biochemical and Immunohistochemical Characterization of Kv3.1 in Auditory Brainstem Nuclei in the Fragile X Knockout Mouse

With $80,000 in funding from FRAXA over several years, the Yale University team of Leonard Kaczmarek, PhD showed that loss of FMRP leads to an increased Kv3.1 potassium currents. This change impairs timing of action potentials in auditory neurons (and likely others throughout the brain).

Read more