Novel Modulators of Potassium Channels to Treat Fragile X

Novel Modulators of Potassium Channels to Treat Fragile X

With previous funding from FRAXA, the Yale University team of Leonard Kaczmarek, PhD showed that loss of FMRP leads to an increased Kv3.1 potassium currents and decreased Slack potassium currents in neurons. Both of these changes impair timing of action potentials in auditory neurons (and likely others throughout the brain). The team also found that the firing pattern of neurons in response to repeated stimulation is severely abnormal in fragile X mice. Based on these results, they are collaborating with the UK-based company Autifony to develop and test advanced compounds which may reverse these deficits.

Read more

Meltdown no more? Targeting Hypersensitivity in Fragile X

Meltdown no more? Targeting Hypersensitivity in Fragile X

Dr. Jonny Lovelace and Dr. Khaleel Razak University of California researchers Khaleel Razak, PhD, and Jonathan W. Lovelace, PhD, explore drug combinations to limit hypersensitivity to sounds in fragile X mice We’ve all been there. Our child with fragile X hears something and becomes excited. Very excited. Hand flapping follows with non-stop jumping and ear-piercing squawking. Nothing helps. No meds. No iPhone. No magic toy. Several minutes go by. Sometimes longer. How many times have you apologized in a grocery store — or restaurant — or at the mall? Wouldn’t it make our lives better if this unpredictable excitability was minimalized or eliminated? That’s the premise behind research being conducted at University of California, Riverside. Principal Investigator Khaleel Razak, PhD, and postdoctoral fellow Jonathan W. Lovelace, PhD, are studying mice genetically altered to mimic the genetic characteristics of humans with Fragile X Syndrome. Their focus is on the mouse brain’s electrical

Read more

Prepulse inhibition in Fragile X

Prepulse inhibition in Fragile X

Alcino Silva, PhD — UCLA with Paul Frankland, PhD, FRAXA Postdoctoral Fellow University of California Los Angelos FRAXA Award: $27,000 in 1999 by Paul Frankland, 8/1/2001 Fragile X syndrome is associated with mild to severe learning disabilities, as well as attentional problems. In 1991, scientists discovered the gene (called FMR1) that causes Fragile X. In people with Fragile X, a defect in the FMR1 shuts the gene down. Like a defective factory, the FMR1 gene cannot manufacture the protein it normally makes. The gene is on strike! The discovery of the Fragile X gene lead to the development of the first Fragile X mouse model. This mutant mouse has been engineered to lack the FMR1 gene, and so, just as in people with Fragile X, no Fragile X protein is manufactured. Because the Fragile X mouse has been found to have learning difficulties, it provides a perfect test ground for

Read more

Synaptic Plasticity and Olfactory Learning in Fragile X

Synaptic Plasticity and Olfactory Learning in Fragile X

With a $40,000 grant from FRAXA Research Foundation in 2000, Dr. John Larson and his team at the University of Illinois Chicago used olfaction (sense of smell) in mice as a neuro-behavioral model system for human memory. They characterized olfactory sensitivity, learning, and memory in FMR1 knockout mice as compared to wild-type (normal control) mice.

Read more