Novel Modulators of Potassium Channels to Treat Fragile X

Novel Modulators of Potassium Channels to Treat Fragile X

With funding from FRAXA, the Yale University team of Leonard Kaczmarek, PhD showed that the firing pattern of suditory neurons in response to repeated stimulation is severely abnormal in Fragile X mice. Based on these results, they are collaborating with the UK-based company Autifony to develop advanced compounds which may reverse these deficits.

Read more

Connectivity as a Biomarker for Future Fragile X Clinical Trials

Connectivity as a Biomarker for Future Fragile X Clinical Trials

With a 2017 grant from FRAXA Research Foundation of $90,000, Dr. Andreas Frick’s team at Neurocentre Magendie, in France, will test non-invasive imaging using magnetic resonance imaging (MRI) as a potential biomarker for future Fragile X syndrome clinical trials.

Read more

Fragile X Syndrome Drug Validation Initiative (FRAXA-DVI)

Fragile X Syndrome Drug Validation Initiative (FRAXA-DVI)

The FRAXA Drug Validation Initiative (FRAXA-DVI) provides speedy, cost-effective, objective preclinical testing of potential new Fragile X treatments. FRAXA has funded FRAXA-DVI for $50,000 or more per year since 2012.

Read more

Defining the Subcellular Specificity of Metabotropic Glutamate Receptor (mGluR5) Antagonists

Defining the Subcellular Specificity of Metabotropic Glutamate Receptor (mGluR5) Antagonists

With $217,500 in grants from FRAXA Research Foundation, Dr. Karen O’Malley and team studied the function of mGluR5 when it is inside cells. Many of the symptoms of Fragile X Syndrome (FXS) are thought to arise due to overactive metabotropic glutamate receptor 5 (mGluR5) signaling, which is normally opposed by the protein missing in FXS, Fragile X Protein (FMRP).

Read more

Biomarker Discovery and Validation for Fragile X Syndrome

Biomarker Discovery and Validation for Fragile X Syndrome

With a $60,000 grant from FRAXA Research Foundation in 2015 that was renewed in 2016, Dr. Eric Klann of New York University will research biomarkers in fraile X syndrome and how to translate these markers from mouse models to human patients.

Read more

Fragile X Mutant Mouse Facility

Fragile X Mutant Mouse Facility

With $375,000 in grants from the FRAXA Research Foundation since 2009, Dr. David Nelson has developed an impressive array of advanced mouse models of Fragile X, at Baylor College of Medicine. These models are available to investigators worldwide on request. This resource has been essential for a broad, rapid distribution of Fragile X and related gene mouse models and has increased the pace of Fragile X research.

Read more

Inhibitors of STEP as a Novel Treatment of Fragile X Syndrome

Inhibitors of STEP as a Novel Treatment of Fragile X Syndrome

With a $349,000 grant from FRAXA Research Foundation from 2008-2015, Dr. Paul Lombroso and his team at Yale University researched if inhibiting STEP could reduce behavioral abnormalities in Fragile X syndrome. Results published.

Read more

Functional Interplay Between FMRP and CDK5 Signaling

Functional Interplay Between FMRP and CDK5 Signaling

With a $180,000 grant from the FRAXA Research Foundation over 2011-2014, Dr. Yue Feng and Dr. Wenqi Li at Emory University will study CDK5 pathway function and regulation in an effort to break down whether and how CDK5 signaling is affected by the loss of the Fragile X protein, FMRP, in the Fragile X mouse model.

Read more

Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome

Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome

With a $474,300 grant from FRAXA Research Foundation from 2000-2013, Dr. Kimberly Huber and her team at the University of Texas conducted several studies on the relationship between mGluR5 and Fragile X syndrome. Dr. Huber made the original discovery of the mGluR Theory of Fragile X when she was a postdoctoral fellow in the lab of Dr. Mark Bear, with her first FRAXA grant in 2000.

Read more

The Endocannabinoid System in a Mouse Model of Fragile X Syndrome

With a $128,500 grant over 2011-2013 from FRAXA Research Foundation, Drs. Bradley Alger and and Ai-Hui Tang at the University of Maryland researched endocannabinoid pathways in Fragile X.

Read more

Small Rho GTPases, a Potential Therapeutic Target for Fragile X Syndrome

Small Rho GTPases, a Potential Therapeutic Target for Fragile X Syndrome

With $384,345 in grants from FRAXA Research Foundation, Dr. MariVi Tejada from the University of Houston focused on a particularly promising point of intervention in pathways of brain receptors, and tested several potential therapeutic compounds in an attempt to rescue function in the mouse model of Fragile X.

Read more

Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome

Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome

Dr. Huber made the original discovery of the mGluR Theory of Fragile X when she was a postdoctoral fellow in the lab of Dr. Mark Bear, with her first FRAXA grant in 2000. Dr. Huber has received $474,300 in grants from FRAXA Research Foundation since then, researching molecular mechanisms and developmental switches in Fragile X syndrome. She has worked with 4 FRAXA Postdoctoral Fellows (Elena Nosyreva, PhD in 2006; Jennifer Roseni, PhD in 2007; Tong Zang, PhD in 2010-2011; and Weirui Guo, PhD in 2012-2013) and has received supporting funds from The Meadows Foundation of/for Texas.

Read more

Ab-Mediated Translation in Fragile X Syndrome

Ab-Mediated Translation in Fragile X Syndrome

With a $120,000 grant from FRAXA Research Foundation during 2011-2012, Dr. Cara Westmark at the University of Wisconsin explored the role of AbPP as a potential treatment option for fragile X. AbPP produces b-amyloid which is over-expressed in Alzheimer’s disease (AD) and Down syndrome. 

Read more

Glycogen Synthase Kinase-3 and Fragile X

Glycogen Synthase Kinase-3 and Fragile X

With $208,000 in funds from FRAXA Research Foundation, Dr. Richard Jope and his team at the University of Miami tested whether newly developed, highly specific inhibitors of GSK3 can reduce behavioral abnormalities in Fragile X mice.

Read more

Genetic and Pharmacologic Manipulation of PI3K Activity in FXS: Assessing Potential Therapeutic Value

Genetic and Pharmacologic Manipulation of PI3K Activity in FXS: Assessing Potential Therapeutic Value

Dr. Bassell’s team has developed powerful molecular genetic techniques to track mRNAs and FMRP particles as they move through these processes in brain tissue from Fragile X knockout mice. They have shown that a specific intracellular signaling pathway, the PI3K/mTOR pathway, is overactive in the absence of FMRP. This pathway is involved in mediating many neuronal neurotransmitter receptors. This project will test new drugs in development which inhibit an enzyme known as PI3 kinase, a part of the pathway, and have the potential to normalize neuronal function in Fragile X.

Read more

Reward Function in Fragile X Syndrome

Reward Function in Fragile X Syndrome

With a $82,500 grant from FRAXA Research Foundation in 2011-2012, Dr. Christopher Cowan and Dr. Laura Smith explored the role of specific signaling pathways in drug-related behavioral deficits, including determining the role, if any, of known impairments in the Fragile X brain.

Read more

A Metabolomic Drug Efficacy Index to Test Treatments in the Fragile X Mouse

A Metabolomic Drug Efficacy Index to Test Treatments in the Fragile X Mouse

Dr. Davidovic has been examining changes in metabolism in various brain regions that are affected in Fragile X patients. She has defined a brain-specific metabolic signature of FXS and is testing treatment strategies to restore normal levels of these metabolites.

Read more

Defining the Subcellular Specificity of Metabotropic Glutamate Receptor (mGluR5) Antagonists

Defining the Subcellular Specificity of Metabotropic Glutamate Receptor (mGluR5) Antagonists

With $109,500 in grants from FRAXA Research Foundation over 5 years, Dr. Karen O’Malley of Washington University researches the relationship between Fragile X syndrome and the functions of mGluR5.

Read more

Role of JNK in FMRP Regulated Translation in Fragile X Syndrome

Role of JNK in FMRP Regulated Translation in Fragile X Syndrome

With a $90,000 grant from FRAXA Research Foundation over 2 years, Dr. Michael Wilhelm and his team at the University of Wisconsin studied a protein known as JNK, which is observed to be abnormally regulated in Fragile X. Like FMRP, it is involved in regulating dendritic protein synthesis, and so it may be a target for drug therapy in Fragile X.

Read more

Serotonergic Rescue of Synaptic Plasticity in FMR1 Knockout Mice

Serotonergic Rescue of Synaptic Plasticity in FMR1 Knockout Mice

With $306,000 in grants from FRAXA Research Foundation, Dr. Julius Zhu from the University of Virginia examined the effects of several drugs such as Buspar and Abilify which manipulate specific serotonin receptors and the effect that has on synaptic plasticity (LTP and LTD).

Read more

Efficient Screening for Pharmaceutical Amelioration of FXS Behavioral Deficits in Drosophila

Efficient Screening for Pharmaceutical Amelioration of FXS Behavioral Deficits in Drosophila

With a $112,250 grant from FRAXA Research Foundation over 3 years, Dr. Efthimios Skoulakis and his team from the Institute of Cellular and Developmental Biology conducted the first FRAXA project in Greece, where they developed a speedy new test for learning problems in fruit flies, which allowed them to test a number of drugs that are potential Fragile X treatments.

Read more

Channelopathies: Altered Ion Channels in Fragile X Syndrome

Channelopathies: Altered Ion Channels in Fragile X Syndrome

With a $95,000 grant from FRAXA Research Foundation from 2010-2011, Dr. Daniel Johnston and Dr. Darrin Brager at the University of Texas at Austin investigated alterations in ion channels in Fragile X syndrome. They explored potential therapeutic effects of drugs which open and close these channels. Results published.

Read more

Role of Excessive Protein Synthesis in the Ontogeny of FXS

Role of Excessive Protein Synthesis in the Ontogeny of FXS

With a $90,000 grant from FRAXA Research Foundation in 2010-2011, Dr. Mark Bear and Dr. Miquel Bosch tested the simple hypothesis that the excessive rate of protein synthesis is not a consequence but the primary cause of the structural alterations occurring in Fragile X syndrome.

Read more