The Endocannabinoid System in a Mouse Model of Fragile X Syndrome

The Endocannabinoid System in a Mouse Model of Fragile X Syndrome

With a $128,500 grant over 2011-2013 from FRAXA Research Foundation, Drs. Bradley Alger and and Ai-Hui Tang at the University of Maryland researched endocannabinoid pathways in Fragile X.

Read more

Small Rho GTPases, a Potential Therapeutic Target for Fragile X Syndrome

Small Rho GTPases, a Potential Therapeutic Target for Fragile X Syndrome

With $384,345 in grants from FRAXA Research Foundation, Dr. MariVi Tejada from the University of Houston focused on a particularly promising point of intervention in pathways of brain receptors, and tested several potential therapeutic compounds in an attempt to rescue function in the mouse model of Fragile X.

Read more

Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome

Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome

With a $90,000 grant from FRAXA Research Foundation, Dr. Kimberly Huber and Dr. Weirui Guo at the University of Texas at Soutnwestern investigated the roles of Homer and CaMKII in Fragile X syndrome.

Read more

A Metabolomic Drug Efficacy Index to Test Treatments in the Fragile X Mouse

A Metabolomic Drug Efficacy Index to Test Treatments in the Fragile X Mouse

Dr. Davidovic has been examining changes in metabolism in various brain regions that are affected in Fragile X patients. She has defined a brain-specific metabolic signature of FXS and is testing treatment strategies to restore normal levels of these metabolites.

Read more

Compound that Inhibits mGluR5 Corrects Signs of Fragile X in Adult Mice

A study finds that a new compound reverses many of the major symptoms associated with Fragile X syndrome (FXS). The paper is published in the April 12 issue of the journal Neuron, describes the exciting observation that the FXS correction can occur in adult mice, after the symptoms of the condition have already been established. Previous research has suggested that inhibition of mGlu5, a subtype of receptor for the excitatory neurotransmitter glutamate, may ameliorate many of the major symptoms of the disease. This study, a collaboration between a group at Roche in Switzerland, led by Dr. Lothar Lindemann, and Dr. Mark Bear’s MIT lab, used an mGlu5 inhibitor called CTEP to examine whether inhibition of mGlu5 could reverse FXS symptoms. The researchers gave CTEP to mice which model Fragile X. "We found that even when treatment with CTEP was started in adult mice, it reduced a wide range of FXSRead more

Altered Dendritic Synthesis of Postsynaptic Scaffold Protein Shank1 in Fragile X Syndrome

Altered Dendritic Synthesis of Postsynaptic Scaffold Protein Shank1 in Fragile X Syndrome

With a $106,800 grant from FRAXA Research Foundation over 2 years, Drs. Stephan Kindler and Hans-Jurgen Kreieinkamp studied a protein, Shank1, which is overabundant in Fragile X syndrome.

Read more

Imaging Synaptic Structure and Function in Fragile X Mice

Imaging Synaptic Structure and Function in Fragile X Mice

With in $150,000 grants from FRAXA Research Foundation over 2005-2009, Dr. Carlos Portera-Cailliau studied intact, anesthetized Fragile X mouse brains, looking for defects in the density, length, or dynamics of the dendrites. They looked for changes in the neurons after treatment with mGluR5 antagonists.

Read more

Role of Matrix Metalloproteinases (MMP-9) in Fragile X

Role of Matrix Metalloproteinases (MMP-9) in Fragile X

With a $220,000 grant from FRAXA Research Foundation over 3 years, Dr. Iryna Ethell from the University of California at Riverside studied the regulation of dendritic structure by matrix metalloproteinases and other extracellular signaling pathways. This work identified a major treatment strategy for Fragile X with the available MMP-9 inhibitor, minocycline.

Read more

Basic Mechanisms of Disease and Potential Therapeutic Strategies

Basic Mechanisms of Disease and Potential Therapeutic Strategies

With $245,000 in grants from FRAXA Research Foundation, Dr. Stephen Warren and his lab at Emory University studied all aspects of Fragile X syndrome, from the mechanisms of repeat expansion to high-throughput drug screens in the Drosophila model of Fragile X. The Warren lab made the original discovery of the Fragile X gene, FMR1, in collaboration with the Nelson and Oostra labs, and is recognized internationally as a leader in molecular genetics. Recent projects include establishment of induced pluripotent stem cell lines from Fragile X patients, and determination of other forms of mutation in the Fragile X gene, other than the most common trinucleotide repeat expansion.

Read more

3 Researchers Honored at FRAXA Investigators Meeting

Three Researchers Honored at FRAXA 2008 Investigators Meeting Over 150 scientists from around the globe gathered in Durham, New Hampshire, for FRAXA Research Foundation's Investigators Meeting on September 21-24, 2008. They came from Australia, Canada, India, Turkey, the U.S., and eight European countries. Their common goal: "to share, collaborate and publish," in the words of FRAXA's Medical Director, Michael Tranfaglia, MD, to find effective treatments and a cure for Fragile X, the foremost inherited cause of mental retardation and autism. Most of the attendees were university-based professors, postdoctoral fellows, and graduate students who have FRAXA research grants. Also participating in the meeting were scientists from the National Institutes of Health (NIMH, NICHD, and NINDS), Neuropharm Group PLC, Hoffman LaRoche Inc., GlaxoSmithKline, Indevus, and Seaside Therapeutics, as well as 20 parents of Fragile X children. At the opening reception, FRAXA honored three investigators for taking extraordinary steps to advance research: FRAXARead more

Glutamate Metabolism in Fragile X Mouse Brain

Glutamate Metabolism in Fragile X Mouse Brain

With a $95,000 grant from FRAXA Research Foundation over 2 years, Mary McKenna at the University of Maryland studied the role of metabotropic glutamate receptors (mGluR) and how they affect other cells and pathways.

Read more

AMPAkines and BDNF in Fragile X: UCI Researchers Restore Memory Process in Fragile X

AMPAkines and BDNF in Fragile X: UCI Researchers Restore Memory Process in Fragile X

With a $104,498 grant from FRAXA Research Foundation from 2003-2008, Dr. Julie Lauterborn at the University of California has done several studies on dentritic spines and finding treatment targets for memory retention in Fragile X mice.

Read more

Targeting the Role of Group 1 Metabotropic Glutamate Receptors

Targeting the Role of Group 1 Metabotropic Glutamate Receptors

With a $40,000 grant from FRAXA Research Foundation in 2008, Dr. Huibert Mansvelder and his team at the University of Amsterdam studied the role of different receptors and their reactions to drug compounds.

Read more

Regulation of Group I Metabotropic Glutamate Receptor Trafficking in Fragile X

Regulation of Group I Metabotropic Glutamate Receptor Trafficking in Fragile X

With an $83,500 grant from FRAXA Research Foundation in 2005 and 2007, Dr. Anna Fracesconi at Albert Einstein College studied the patterns and pathways of different receptors related to Fragile X.

Read more

Decreased Excitatory Drive onto Parvalbumin-Positive Neocortical Inhibitory Neurons in a Mouse Model of Fragile X Syndrome

Decreased Excitatory Drive onto Parvalbumin-Positive Neocortical Inhibitory Neurons in a Mouse Model of Fragile X Syndrome

With an $80,000 grant from FRAXA Research Foundation over 2006-7, Drs. Jay Gibson and Kimberly Huber at the University of Texas at Southwestern examined if the defected inhibitory neurotransmission was a primary or secondary symptom of Fragile X to determine where future treatment targets should be focused.

Read more

Social Deficits in Fragile X Syndrome: Do Gene-Gene Interactions Play a Role?

Social Deficits in Fragile X Syndrome: Do Gene-Gene Interactions Play a Role?

With a $100,000 grant from FRAXA Research Foundation from 2005-2006, Drs. Jean Lauder and Sheryl Moy at the University of North Carolina looked for gene-gene interactions in Fragile X syndrome.

Read more

Metabotropic Glutamate Receptor Function in Fragile X Knockout Mice

Metabotropic Glutamate Receptor Function in Fragile X Knockout Mice

With $143,000 in grants from FRAXA Research Foundation from 2004-2006, Drs. Walter Kaufmann, Richard Huganier, Paul Worley, and David Lieberman at Johns Hopkins University studied the molecular dynamics of mGluRs in areas involved in cognition in the Fragile X knockout mouse.

Read more

Drosophila CYFIP, a Molecular Link Between Actin Cytoskeleton Remodeling and Fragile X

Drosophila CYFIP, a Molecular Link Between Actin Cytoskeleton Remodeling and Fragile X

With $130,000 in funding from FRAXA Research Foundationfrom 2004-2006, Dr. Angela Giangrande at the Universite Louis Pasteur investigated the interactions between dendrites, messenger mRNA, and the cytoskeleton in fruit flies, which are a simple yet powerful system in which multiple genes can be manipulated with relative ease.

Read more

Alterations in Neocortical Neuron Excitability Associated with Fragile X

Alterations in Neocortical Neuron Excitability Associated with Fragile X

With a $107,000 grant from FRAXA Research Foundation from 2005-2006, Dr. Charles Cox at the University of Illinois looked for alterations in the intrinsic excitability of individual neurons within the visual neocortex in Fragile X syndrome.

Read more

Pharmacologic Interventions in the Fmr1 KO Mouse

Pharmacologic Interventions in the Fmr1 KO Mouse

With $48,600 in grants from FRAXA Research Foundation over 2004-2006, Dr. Catherine Choi at Drexel University studied Fragile X knockout mice to determine future treatment targets for Fragile X syndrome in humans.

Read more

Role of Experience in Regulating Levels of the Fragile X Protein

Role of Experience in Regulating Levels of the Fragile X Protein

FRAXA Research Grant to Kenneth J. Mack, MD, PhD — Mayo Clinic with Peter K. Todd, MD, PhD, Postdoctoral Fellow   FRAXA Awards: $29,000 in 2001 $20,000 in 2000 Final Report on Dr. Mack’s Project While a professor at University of Wisconsin-Madison, Dr. Mack investigated whether and how FMRP levels are regulated in response to neuronal stimulation in vivo (in live animals). He looked at the effects of seizures and of experience in his experiments. Dr. Mack and colleagues published their findings in the Proceedings of the National Academy of Sciences: The Fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95 Peter K. Todd, Kenneth J. Mack, and James S. Malter PNAS | November 25, 2003 | vol. 100 | no. 24

Read more

Studies of glutamate receptor trafficking

Studies of glutamate receptor trafficking

Robert Malinow, PhD, Principal Investigator Julius Zhu, PhD, FRAXA Postdoctoral Fellow Cold Spring Harbor Laboratory   FRAXA Award: $35,000 in 2001 While he was a postdoctoral fellow in Dr. Malinow’s lab, Dr. Julius Zhu carried out experiments designed to define the set of proteins which are affected in Fragile X syndrome and understand how they function together. In 2002, Dr. Zhu started his own lab at the University of Virginia where he is continuing his Fragile X work with new funding from FRAXA. More information.

Read more