With a $60,000 grant from FRAXA Research Foundation, Dr. Giovanni Neri and his team at Universita Cattolica del S. Cuore explored reactivation of the FMR1 gene and characterization of cell lines with unmethylated full mutation.
Read more
Doris Buffett’s Challenge Grant to FRAXA: Over $1.5 Million for Research!
In the Spring of 2007, Doris Buffett, president of the Sunshine Lady Foundation, challenged FRAXA to raise $500,000 in new funds by November 1 which she’d match. The grand total of new donations received was $1,424,562, with an additional $98,755 in pledges payable by March 1st, for a total of $1,523,317! Together with Ms. Buffett’s initial $500,000 gift, FRAXA received over $3.5 million in new money — all for research aimed at curing or treating Fragile X. Thanks so very much to all of you who helped make this happen. More than 2600 people donated toward the Challenge – it is a true grass-roots community success.
Read more
Clinical Trial of Aripiprazol in Fragile X Syndrome
With a FRAXA Research Foundation grant of $30,000 in 2006, Dr. Erickson conducted a pilot clinical trial of an available medicine, aripiprazole (brand-name Abilify). This was an open-label 12-week trial in 12 people ages 6–25 years with Fragile X. Results were promising, and published: 10 of the 12 participants showed behavioral improvements.
Read more
FRAXA Contributes $10,000 to NIH grant to Seaside Therapeutics
Randy Carpenter, MD Principal Investigator with Mark Bear, PhD, MIT Co-Investigator (2007) conducted a clinical development of mGluR5 antagonists to treat Fragile X Syndrome and Autism. Seaside Therapeutics received a major grant from the NIH, with additional funding from FRAXA and Cure Autism Now (CAN) to develop STX107, a selective mGluR5 antagonist, as a treatment for Fragile X. Unfortunately, Seaside has since discontinued development of STX107.
Read moreTaurine and Somatostatin as Potential Treatments for Fragile X Syndrome: A Unifying Neuro-Endocrine Hypothesis
With a $74,000 grant from FRAXA Research Foundation, Dr. Abdeslem El Idrissi at CUNY explored the GABA receptor system in Fragile X mice and tested somatostatin and taurine as potential therapies for Fragile X; while somatostatin must be infused intravenously, taurine is available as a nutritional supplement.
Read more
FMRP-MAP1b RNA Interactions in Fragile X Syndrome
With a $95,000 grant from FRAXA Research Foundation from 2006-2007, Dr. Mihaela Mihailescu and her team at Dusquesne University studied the relationship between FMRP, RNA sequences, and G quartet structure. Results published.
Read more
Regulation of Group I Metabotropic Glutamate Receptor Trafficking in Fragile X
With an $83,500 grant from FRAXA Research Foundation in 2005 and 2007, Dr. Anna Fracesconi at Albert Einstein College studied the patterns and pathways of different receptors related to Fragile X.
Read more
Decreased Excitatory Drive onto Parvalbumin-Positive Neocortical Inhibitory Neurons in a Mouse Model of Fragile X Syndrome
With an $80,000 grant from FRAXA Research Foundation over 2006-7, Drs. Jay Gibson and Kimberly Huber at the University of Texas at Southwestern examined if the defected inhibitory neurotransmission was a primary or secondary symptom of Fragile X to determine where future treatment targets should be focused.
Read more
Electrophysiological, Biochemical and Immunohistochemical Characterization of Kv3.1 in Auditory Brainstem Nuclei in the Fragile X Knockout Mouse
With $80,000 in funding from FRAXA over several years, the Yale University team of Leonard Kaczmarek, PhD showed that loss of FMRP leads to an increased Kv3.1 potassium currents. This change impairs timing of action potentials in auditory neurons (and likely others throughout the brain).
Read more
Baclofen: GABA(B) Receptor Supersensitivity and Normalization of Behavioral Abnormalities by Various GABA(B) Agonists Including Baclofen in FMRP Deficient Mice
With $110,000 in grants from FRAXA Research Foundation over several years, Dr. Miklos Toth from Cornell University discovered increased startle response in Fragile X mice and that baclofen can correct this phenotype.
Read more
Hypothalamic Pituitary Adrenal (HPA) Axis Dysregulation in Fragile X Syndrome
The hypothalamic pituitary adrenal (HPA) axis is our central stress response system. FRAXA Research Foundation awarded Dr. Carolyn B. Smith $62,000 in funding in 2005 to explore the HPA axis in Fragile X mice. The results of their study indicate that, in FVB/NJ mice, the hormonal response to and recovery from acute stress is unaltered by the lack of Fragile X mental retardation protein. Results published.
Read more
Defining Functional Domains of FMRP and Uncovering its Partners via Large Scale Mutagenesis in Drosophila
With $80,000 in funding from FRAXA Research Foundation in 2005 and in 2006, Dr. Yong Zhang and his team at the Chinese Academy of Sciences developed a way to find genes that suppress the Fragile X gene. FRAXA grants $40,000 (2006) and $40,000 (2005) by Xinda Lin show that FMRP is a widely expressed RNA-binding protein involved in RNA transport and translation. Intensive studies in the last decade have demonstrated that FMRP contains four RNA binding domains, but their actual functions are mostly untested. Meanwhile, a dozen or so protein partners and hundreds of mRNA targets interacting with FMRP have been identified, but again their functions are poorly understood.
Read more
Experimental Compound FRAX486 Reverses Signs of Fragile X in Mice
With an $81,000 grant from FRAXA Research Foundation from 2005-2006, Dr. Susumu Tonegawa and his team at MIT studied the enzyme PAK to determine how it could be used for a treatment target. Results published.
Read more
Protein Synthesis in Interneurons in Fragile X Mice
With a $100,000 grant from FRAXA Research Foundation from 2004-2006, Dr. Oswald Steward and his team at the University of California studied protein synthesis alterations in Fragile X mice in the brains’ interneurons.
Read more
Therapeutic Interventions in FMR1 Knockout and Transgenic Mice: Role of the FMR1 Gene
With a $229,000 grant from FRAXA Research Foundation in 2006, Drs. Richard Paylor, David Albeck, and Francis Brennan at the Baylor College of Medicine found that, in mice as in humans, the level of Fragile X protein in brain cells plays a prominent role in determining levels of activity and anxiety.
Read more
Splicing Variations of the Fragile X Gene
With an $80,000 grant from FRAXA Research Foundation from 2005-2006, Dr. David Morris and his team at the University of Washington aimed to understand the variation in distribution and function of FMRP isoforms, sought to identify isoforms of FMRP in mouse brain, and define the expression pattern of these versions of the protein.
Read more
Examining the Amygdala in Mouse Models of Fragile X
With a $63,000 grant from FRAXA Research Foundation in 2006, Dr. Joseph LeDoux and his team at New York University studied the role of the amygdala in Fragile X syndrome using mouse models.
Read more
Social Deficits in Fragile X Syndrome: Do Gene-Gene Interactions Play a Role?
With a $100,000 grant from FRAXA Research Foundation from 2005-2006, Drs. Jean Lauder and Sheryl Moy at the University of North Carolina looked for gene-gene interactions in Fragile X syndrome.
Read more
Metabotropic Glutamate Receptor Function in Fragile X Knockout Mice
With $143,000 in grants from FRAXA Research Foundation from 2004-2006, Drs. Walter Kaufmann, Richard Huganier, Paul Worley, and David Lieberman at Johns Hopkins University studied the molecular dynamics of mGluRs in areas involved in cognition in the Fragile X knockout mouse.
Read more
Role of FMRP Interacting Protein CYFIP1 in Prader-Willi and Fragile X Syndromes
With a $105,000 grant from FRAXA Research Foundation from 2005-2006, Dr. Yong-Hui Jiang at Baylor College of Medicine explored the relationship between Fragile X syndrome and Prader-Willi syndrome.
Read more
Drosophila CYFIP, a Molecular Link Between Actin Cytoskeleton Remodeling and Fragile X
With $130,000 in funding from FRAXA Research Foundationfrom 2004-2006, Dr. Angela Giangrande at the Universite Louis Pasteur investigated the interactions between dendrites, messenger mRNA, and the cytoskeleton in fruit flies, which are a simple yet powerful system in which multiple genes can be manipulated with relative ease.
Read more
Genetic and Behavioral Analyses of the dFMR1 Pathway in Drosophila Peripheral Nervous System
With a $160,000 grant from FRAXA Research Foundation from 2004-2006, Dr. Fen-Biao Gao and his team at the University of California studied the relationship between mRNA and FMRP.
Read more
Transcriptional Regulation of the Fragile X Gene
With a $60,000 in grant from FRAXA Research Foundation, Dr. Justin Fallon and his team at Brown University studied systematic mapping of Fragile X granules in developing mouse brains, revealing a potential role for presynaptic FMRP in sensorimotor functions.
Read more
Alterations in Neocortical Neuron Excitability Associated with Fragile X
With a $107,000 grant from FRAXA Research Foundation from 2005-2006, Dr. Charles Cox at the University of Illinois looked for alterations in the intrinsic excitability of individual neurons within the visual neocortex in Fragile X syndrome.
Read more
Pharmacologic Interventions in the Fmr1 KO Mouse
With $48,600 in grants from FRAXA Research Foundation over 2004-2006, Dr. Catherine Choi at Drexel University studied Fragile X knockout mice to determine future treatment targets for Fragile X syndrome in humans.
Read more