Developing IPS cells to Screen Drugs which can Reactivate the FMR1 Gene
This project developed human stem cell and mouse models to test FMR1 gene reactivation in the brain, advancing future gene therapy strategies for Fragile X.
Targeting mGluR-LTD to Treat Fragile X Syndrome
With FRAXA support, Dr. Kimberly Huber uncovered how mGluR signaling contributes to Fragile X, laying the foundation for major clinical advances.
Preclinical Evaluation of Serotonin Receptor Agonists as Novel Pharmacological Tools in Fragile X Syndrome
With FRAXA funding the team found that activating 5-HT7 receptors reversed excess mGluR-LTD in Fragile X mice, pointing to a new route to fix synapses.
Small Rho GTPases, a Potential Therapeutic Target for Fragile X Syndrome
Dr. MariVi Tejada from the University of Houston tested several potential therapeutic compounds in an attempt to rescue function in the mouse model of Fragile X.
Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome
Disrupted mGluR5–Homer scaffolding in Fragile X is linked to excess CaMKII activity. Restoring this interaction could rebalance signaling and improve symptoms.
Clinical Trials FAQ ← Frequently Asked Questions
Wondering which Fragile X trial is right? Eligibility varies, so most families qualify for just one. Talk with your closest clinic to find the best fit.
Darren’s Smile
Darren’s story reminds us how loved he was and how fragile life can be. His father’s memoir honors his life and raises Fragile X awareness.
NPR, “Progress Made On Drug For Autism Symptoms”
An experimental drug that helps people who have Fragile X syndrome is raising hopes of a treatment for autism. The drug, called arbaclofen, made people with Fragile X syndrome less likely to avoid social interactions, according to a newly published study. Researchers suspect it might do the same for people with autism.
A Developmental Switch Exists in the Effects of FMRP
Fragile X research found that FMRP’s role in synapse development changes with age—early on it builds synapses, later it removes them—via MEF2 signaling.
Ab-Mediated Translation in Fragile X Syndrome
This work found amyloid precursor protein (APP) overexpression and increased β-amyloid in Fragile X mice, implicating Alzheimer-related pathways in FXS pathology.
Synaptic Actin Signaling Pathways in Fragile X
Fragile X neurons show excess or mis-timed actin remodeling at synapses caused by FMRP loss. Modulating actin regulators rescued connectivity in mice.
Genetic and Pharmacologic Manipulation of PI3K Activity in FXS: Assessing Potential Therapeutic Value
Targeting the PI3K/mTOR cascade — specifically p110β — in Fragile X mice reversed neural and behavioral dysfunctions, validating it as a treatment pathway.
Reward Function in Fragile X Syndrome
Loss of FMRP disrupts dopamine-driven reward function—Fragile X mice show impaired cocaine sensitization and place preference, revealing new plasticity defects.
A Metabolomic Drug Efficacy Index to Test Treatments in the Fragile X Mouse
This work revealed small-molecule metabolic changes in Fragile X brains and is using them to build a drug-efficacy index for screening therapies.
Inherited Channelopathies in Cortical Circuits of Fmr1 KO Mice
Researchers found that Fragile X brain circuits show faulty ion channel activity (channelopathies). Fixing these channels may restore normal brain signalling.
FRAXA Announces 2012 Fragile X Research Awards
$1.13 million in FRAXA funding in 2012 supported new Fragile X research projects and renewals, advancing work toward better treatments.
In Vitro Coherent Network Activity
This work revealed that Fragile X neurons form disordered network dynamics—laying groundwork for using network activity as a treatment-screening metric.
Role of JNK in FMRP Regulated Translation in Fragile X Syndrome
JNK kinase is abnormally active in Fragile X model mice and directly regulates mGluR-dependent translation of FMRP targets, pointing to JNK as a therapeutic target.
Serotonergic Rescue of Synaptic Plasticity in FMR1 Knockout Mice
Dr. Zhu examined how serotonin-targeting drugs such as Buspar and Abilify influence synaptic plasticity, including LTP and LTD.
Efficient Screening for Pharmaceutical Amelioration of FXS Behavioral Deficits in Drosophila
Using a fruit-fly Fragile X model, researchers screened many drugs quickly to find those that improve behavior, speeding up potential treatment testing.
160 scientists and dozens of parents attended the FRAXA Investigators Meeting
Researchers met in Southbridge, MA, to advance Fragile X treatments. Congrats to Drs. Bear, Osterweil & Berry-Kravis on their awards!
Channelopathies: Altered Ion Channels in Fragile X Syndrome
Ion channel defects (“channelopathies”) in Fragile X disrupt neuron firing and network balance. This study maps these channel changes to guide targeted treatments.
Role of Excessive Protein Synthesis in the Ontogeny of FXS
Excessive neuronal protein synthesis is not just a symptom but appears to cause early synaptic wiring defects in Fragile X — highlighting translation control as a key target.
Altered Dendritic Synthesis of Postsynaptic Scaffold Protein Shank1 in Fragile X Syndrome
Loss of FMRP leads to excess synthesis of the scaffold protein Shank1 at dendrites. Elevated Shank1 may impair synaptic pruning and drive Fragile X spine pathology.


















