Inhibitors of STEP as a Novel Treatment of Fragile X Syndrome

Inhibitors of STEP as a Novel Treatment of Fragile X Syndrome

With a $349,000 grant from FRAXA Research Foundation from 2008-2015, Dr. Paul Lombroso and his team at Yale University researched if inhibiting STEP could reduce behavioral abnormalities in fragile X syndrome. Results published.

Read more

Social Behavior as an Outcome Measure for Fragile X Clinical Trials

Social Behavior as an Outcome Measure for Fragile X Clinical Trials

One of the features of the fragile X mouse model which is relevant to the human fragile X syndrome (and autism) is social behavior. Several tests show consistent social behavioral abnormalities in the fragile X mouse model. With a $140,000 grant from FRAXA Research Foundation in 2012-2013, Dr. Willemsen at Erasmus University used social behavior tests to measure the effectiveness of several drug strategies.

Read more

What Works, and What Doesn’t

At the start, it’s always hard to know what methods will work best for something as complex as the development of disease-modifying treatments for fragile X. But, we’ve always tried to let the science lead us down the right path. At this point, the results are unequivocal, and they have shaped how we are looking for the Next Great Thing in fragile X treatments. As a bit of background, it’s worth noting that there are two basic ways of approaching treatment research for any disease: rational drug discovery vs. high-throughput screening. Rational drug discovery means exploring the basic mechanism of disease and identifying specific “treatment targets” that might be expected to correct the underlying problem. Usually, the target is an enzyme (a protein which facilitates biochemical reactions in the cell) or a receptor (a protein, usually on the cell surface, which detects small amounts of a chemical messenger, such asRead more

AMPAkines and BDNF in Fragile X: UCI Researchers Restore Memory Process in Fragile X

AMPAkines and BDNF in Fragile X: UCI Researchers Restore Memory Process in Fragile X

With a $104,498 grant from FRAXA Research Foundation from 2003-2008, Dr. Julie Lauterborn at the University of California has done several studies on dentritic spines and finding treatment targets for memory retention in fragile X mice.

Read more

Therapeutic Interventions in FMR1 Knockout and Transgenic Mice: Role of the FMR1 Gene

Therapeutic Interventions in FMR1 Knockout and Transgenic Mice: Role of the FMR1 Gene

With a $229,000 grant from FRAXA Research Foundation in 2006, Drs. Richard Paylor, David Albeck, and Francis Brennan at the Baylor College of Medicine found that, in mice as in humans, the level of fragile X protein in brain cells plays a prominent role in determining levels of activity and anxiety.

Read more

Studies of the Fragile X Knock-Out Mouse: Improving Memory Reversal Testing and Treatment with AMPAkines

Studies of the Fragile X Knock-Out Mouse: Improving Memory Reversal Testing and Treatment with AMPAkines

W. Ted Brown, MD, PhD — IBR, NY FRAXA Awards: $37,000 in 1998 $25,000 in 1997   To develop an improved test to show learning deficits in the FMR1 knock-out mouse model of fragile X, and then to test the effects of experimental drugs (Ampakines) that may be effective in treating these deficits.

Read more