Impact of the Fragile X Community

Impact of the Fragile X Community

At FRAXA Research Foundation, we are truly grateful for our Fragile X community and thousands of donors. We couldn’t keep moving the ball forward in research without your support. Each year FRAXA invests over $1 million in Fragile X research thanks to your support. Because we supported these three researchers, we were able to secure another $35 million in research aimed at identifying clinical trial outcome measures that will lead to human trials of promising treatments for those affected by Fragile X.

Read more

Kimberly Huber, PhD, Explores Hyperexcitability in Fragile X Syndrome

Kimberly Huber, PhD, Explores Hyperexcitability in Fragile X Syndrome
Sensory Overload Ever wonder why your child with Fragile X suddenly screams for no apparent reason or jumps and flaps uncontrollably seemingly for hours? You got it: hyperexcitability. But what exactly causes it? And what can fix it? Kimberly Huber, PhD, is working long and hard in her lab to answer those questions. Dr. Huber, professor, Neuroscience, UT Southwestern Medical Center, is seeking to understand how FMRP regulates connections between brain cells, called synapses, and the function of brain circuits, which are several connected brain cells. Her current focus is the study of synapses and brain circuits in the mouse that mediate sensory perception, including perception of touch and sound. She aims to understand the cellular and molecular mechanisms by which loss of FMRP causes hyperexcitable sensory circuits. The goal: to develop targeted therapeutics that can restore normal brain function and reduce sensory hypersensitivity. “Sensory brain circuits are overactive, or hyperexcitable,Read more

Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome

Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome

With a $474,300 grant from FRAXA Research Foundation from 2000-2013, Dr. Kimberly Huber and her team at the University of Texas conducted several studies on the relationship between mGluR5 and Fragile X syndrome. Dr. Huber made the original discovery of the mGluR Theory of Fragile X when she was a postdoctoral fellow in the lab of Dr. Mark Bear, with her first FRAXA grant in 2000.

Read more

Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome

Evaluation of CamKII Dependent Regulation of mGluR5-Homer Scaffolds as a Potential Therapeutic for Fragile X Syndrome

Dr. Huber made the original discovery of the mGluR Theory of Fragile X when she was a postdoctoral fellow in the lab of Dr. Mark Bear, with her first FRAXA grant in 2000. Dr. Huber has received $474,300 in grants from FRAXA Research Foundation since then, researching molecular mechanisms and developmental switches in Fragile X syndrome. She has worked with 4 FRAXA Postdoctoral Fellows (Elena Nosyreva, PhD in 2006; Jennifer Roseni, PhD in 2007; Tong Zang, PhD in 2010-2011; and Weirui Guo, PhD in 2012-2013) and has received supporting funds from The Meadows Foundation of/for Texas.

Read more

Decreased Excitatory Drive onto Parvalbumin-Positive Neocortical Inhibitory Neurons in a Mouse Model of Fragile X Syndrome

Decreased Excitatory Drive onto Parvalbumin-Positive Neocortical Inhibitory Neurons in a Mouse Model of Fragile X Syndrome

With an $80,000 grant from FRAXA Research Foundation over 2006-7, Drs. Jay Gibson and Kimberly Huber at the University of Texas at Southwestern examined if the defected inhibitory neurotransmission was a primary or secondary symptom of Fragile X to determine where future treatment targets should be focused.

Read more