Auditory Dysfunction in Fragile X Syndrome in a Mouse Model of Fragile X

Auditory Dysfunction in Fragile X Syndrome in a Mouse Model of Fragile X

With a $90,000 grant from FRAXA, Dr. McCullagh and Dr. Achem Klug at the University of Colorado investigated whether auditory neural circuits are altered in Fragile X mice. They saw minor differences in these mice compared to B6 (control) mice in several measures of auditory acuity. Fmr1 mice had increased latency to the startle response for almost all conditions compared to B6 mice, suggesting altered timing to acoustic cues. These experiments show that, consistent with patient reports and anatomical/physiological data, the auditory system is altered in a mouse model of FXS, though with some potential compensation leading to a subtle behavioral impact.

Read more

Effects of minocycline on vocal production and auditory processing in a mouse model of Fragile X

Effects of minocycline on vocal production and auditory processing in a mouse model of Fragile X

With $135,000 in grants from FRAXA Research Foundation over several years, Dr. Khaleel Razak and Dr. Iryna Ethell explored robust biomarkers relevant to the FXS and the efficacy of minocycline treatment.

Read more

GABAergic Inhibitory Function in Fragile X Syndrome

GABAergic Inhibitory Function in Fragile X Syndrome

With a $100,000 grant from FRAXA Research Foundation, Drs. Joshua Corbin and Molly Huntsman from the Children’s National Medical Center examined the role of a particular class of brain cells (inhibitory interneurons) that dampen excessive activity in the “emotional center of the brain” (the amydala). This inhibition is deficient in Fragile X, and so they are looking for ways to remedy this. This is particularly interesting to parents of children who are overly anxious and emotional. They worked with Dr. Walter Kaufmann, a clinician at Kennedy Krieger Institute in Maryland.

Read more

Genome-wide Epigenetic Markers in Fragile X

Genome-wide Epigenetic Markers in Fragile X

With $45,000 in grants from FRAXA Research Foundation over several years, Dr. Miklos Toth of Cornell University studied epigenetics (ie factors other than the gene itself) which can determine symptom severity in Fragile X.

Read more

Baclofen: GABA(B) Receptor Supersensitivity and Normalization of Behavioral Abnormalities by Various GABA(B) Agonists Including Baclofen in FMRP Deficient Mice

Baclofen: GABA(B) Receptor Supersensitivity and Normalization of Behavioral Abnormalities by Various GABA(B) Agonists Including Baclofen in FMRP Deficient Mice

With $110,000 in grants from FRAXA Research Foundation over several years, Dr. Miklos Toth from Cornell University discovered increased startle response in Fragile X mice and that baclofen can correct this phenotype.

Read more

Therapeutic Interventions in FMR1 Knockout and Transgenic Mice: Role of the FMR1 Gene

Therapeutic Interventions in FMR1 Knockout and Transgenic Mice: Role of the FMR1 Gene

With a $229,000 grant from FRAXA Research Foundation in 2006, Drs. Richard Paylor, David Albeck, and Francis Brennan at the Baylor College of Medicine found that, in mice as in humans, the level of Fragile X protein in brain cells plays a prominent role in determining levels of activity and anxiety.

Read more

Treatment of a Mouse Model of Fragile X Syndrome with MPEP

Treatment of a Mouse Model of Fragile X Syndrome with MPEP

With a $49,000 grant from FRAXA Research Foundation in 2003, Dr. Linda Crnic at the University of Colorado continued studies of MPEP in Fragile X mice, exploring whether chronic use improves symptoms of Fragile X syndrome without impairing cognitive function.

Read more

Startle Modulation in Males with Fragile X Syndrome

Startle Modulation in Males with Fragile X Syndrome

With a $42,720 grant from FRAXA Research Foundation in 2001, Dr. Elisabeth Dykens at Vanderbilt University showed that startle and prepulse inhibition (PPI) are very much affected in young males are particularly affected by Fragile X syndrome. Results published.

Read more