Coffee, Tea, and Chocolate: Adenosine Receptors in Fragile X

Coffee, Tea, and Chocolate: Adenosine Receptors in Fragile X

Caffeine is the most popular smart drug in the world. With a $90,000 grant from FRAXA Research Foundation, Alberto Martire, PhD and Antonella Borreca, PhD in Rome, Italy are investigating adenosine receptors antagonists to treat Fragile X syndrome. Compounds which are able to block adenosine receptors are commonly found in tea, chocolate, and coffee.

Read more

Bryostatin Restores Learning and Memory in Adult Fragile X Mice

Bryostatin Restores Learning and Memory in Adult Fragile X Mice
Just as the Amazon rainforest may hold a cure for cancer if only scientists can find it, a bizarre marine critter found off the California coast — Bugula neritina— is the only known source of a potential new Fragile X treatment, Bryostatin. Last month, FRAXA sat down with scientists from Neurotrope BioScience, a specialty biopharmaceutical company developing medicines for rare diseases and Alzheimer’s based on Bryostatin. Their Fragile X program is based on research by a West Virginia team led by Daniel Alkon, MD, which showed that Bryostatin-1 restores hippocampal synapses and spatial learning and memory in adult Fragile X mice. “Our results show that synaptic and cognitive function of adult FXS mice can be normalized through pharmacologic treatment and that bryostatin-1-like agents may represent a novel class of drugs to treat Fragile X mental retardation even after postpartum brain development has largely completed,” remarked Dr. Alkon. Bugula and Bryostatins Often mistaken for seaweed, bugula is actually colonies of small animals, likeRead more

AMPAkines and BDNF in Fragile X: UCI Researchers Restore Memory Process in Fragile X

AMPAkines and BDNF in Fragile X: UCI Researchers Restore Memory Process in Fragile X

With a $104,498 grant from FRAXA Research Foundation from 2003-2008, Dr. Julie Lauterborn at the University of California has done several studies on dentritic spines and finding treatment targets for memory retention in Fragile X mice.

Read more

Therapeutic Interventions in FMR1 Knockout and Transgenic Mice: Role of the FMR1 Gene

Therapeutic Interventions in FMR1 Knockout and Transgenic Mice: Role of the FMR1 Gene

With a $229,000 grant from FRAXA Research Foundation in 2006, Drs. Richard Paylor, David Albeck, and Francis Brennan at the Baylor College of Medicine found that, in mice as in humans, the level of Fragile X protein in brain cells plays a prominent role in determining levels of activity and anxiety.

Read more