Integrating Human and Mouse Studies in Fragile X Syndrome – an NIH Center Approach

Integrating Human and Mouse Studies in Fragile X Syndrome – an NIH Center Approach
FRAXA Seminar Series This virtual seminar series addresses a wide range of current topics in Fragile X research. Hosted by FRAXA and organized by Michael Tranfaglia, MD and Patricia Cogram, PhD, sessions feature outstanding speakers from universities and the biotech and pharmaceutical industries.  Presentation Summary Craig Erickson - Translational medicine and mechanistic studies of brain neurophysiology in Fragile X Syndrome: A NIH Center Overview Ernest Pedapati - Network Mechanisms, Biomarkers, and Pharmacology of Fragile X Syndrome in Humans Devin Binder - Network Mechanisms of Neurophysiology and Behavior in mouse models of Fragile X Syndrome Kimberly Huber - FMRP Regulation of local and long-range neocortical circuits in the mouse: Links with EEG phenotypes About the SpeakersCraig A. Erickson, MD Professor of Psychiatry at Cincinnati Children's Hospital and the University of Cincinnati College of Medicine Craig Erickson is the director of the Cincinnati Fragile X Research and Treatment Center. Craig has devoted his careerRead more

Mechanisms and Biomarkers of Sensory Hypersensitivity in the fmr1 Knockout Mouse

Mechanisms and Biomarkers of Sensory Hypersensitivity in the fmr1 Knockout Mouse

In this Fragile X research webinar we hear from Devin K. Binder, MD, PhD, Professor, University of California at Riverside Medical School and Khaleel Razak, PhD, Professor, University of California at Riverside as they present about Mechanisms and Biomarkers of Sensory Hypersensitivity in the fmr1 Knockout Mouse.

Read more

Mechanisms and Biomarkers of Sensory Hypersensitivity in the fmr1 Knockout Mouse

Mechanisms and Biomarkers of Sensory Hypersensitivity in the fmr1 Knockout Mouse

This is the second in a series of webinars focused on current topics in Fragile X research. Devin K. Binder, MD, PhD, Professor, University of California at Riverside Medical School and Khaleel Razak, PhD, Professor, University of California at Riverside will present.

Read more

Cholesterol-Dependent Changes in Fragile X Astrocytes

Cholesterol-Dependent Changes in Fragile X Astrocytes

FRAXA Research Foundation has awarded $45,000 to Dr. Maija Castrén, of the University of Helsinki, Finland. Dr. Castren is working with Dr. Iryna Ethell, at the University of California at Riverside, to uncover mechanisms behind beneficial effects of lovastatin and cholesterol-dependent changes seen in the Fragile X brain.

Read more

MicroRNA Mediated Astroglial GLT1 Dysregulation in Fragile X

MicroRNA Mediated Astroglial GLT1 Dysregulation in Fragile X

Almost all brain research focuses on neurons – nerve cells. However, the brain has many more glial cells which support, nourish, and protect the neurons. FRAXA Research Foundation awarded a 2017 grant $90,000 to support Dr. Yang’s studies of how changes in glial cells contribute to Fragile X syndrome. This grant is funded by a grant from the Pierce Family Fragile X Foundation.

2017 Fragile X Research Grant: MicroRNA Mediated Astroglial GLT1 Dysregulation in Fragile XRead more

Correcting Defects in Astrocyte Signaling in Fragile X Syndrome

Correcting Defects in Astrocyte Signaling in Fragile X Syndrome

With a $90,000 grant from the FRAXA Research Foundation from 2015-2016, Dr. Laurie Doering and Dr. Angela Scott at McMasters University studied astrocytes in Fragile X. Astrocytes, brain cells which support neurons, do not transmit signals. Several treatment strategies for Fragile X have been proposed based on correction of “astrocyte phenotypes”.

Laurie Doering, PhDRead more

Fragile X Treatment: New Research Directions

Fragile X Treatment: New Research Directions

In the wake of negative results from several high-profile clinical trials in Fragile X, we find ourselves questioning many of our previous assumptions about the nature of this disorder. After all, understanding the basic pathology of disease is critical to development of new treatments — this is true across the board, in all branches of medicine.

Read more

Glutamate Metabolism in Fragile X Mouse Brain

Glutamate Metabolism in Fragile X Mouse Brain

With a $95,000 grant from FRAXA Research Foundation over 2 years, Mary McKenna at the University of Maryland studied the role of metabotropic glutamate receptors (mGluR) and how they affect other cells and pathways.

Read more