Inherited Channelopathies in Cortical Circuits of Fmr1 KO Mice

Inherited Channelopathies in Cortical Circuits of Fmr1 KO Mice
With this $90,000 award, Dr. Zhang and Principal Investigator Dr. Andreas Frick at Neurocentre Magendie in France investigated channelopathies using Fragile X mice. $90,000 GrantNeurocentre Magendie 2010-11 FRAXA Research Grant $90,000 over 2 Years Andreas Frick, PhD; Principal Investigator Yu Zhang, PhD; FRAXA Postdoctoral Fellow Many other proteins are misregulated as a result of the absence of FMRP. It is known that many ion channels, the pores in the cell membrane which allow neurons to conduct electrical impulses, have altered levels in Fragile X. This state is sometime called a “channelopathy” in the pharma world. This group is studying the effect of specific alterations in ion channels, and potential therapeutic effects of drugs which open and close these channels. The mammalian neocortex is central for processes as diverse as sensory information processing, perception or control of motor activity, and cortical defects have devastating neurological and psychiatric consequences. In humans, the consequences of FragileRead more

Channelopathies: Altered Ion Channels in Fragile X Syndrome

Channelopathies: Altered Ion Channels in Fragile X Syndrome

With a $95,000 grant from FRAXA Research Foundation from 2010-2011, Dr. Daniel Johnston and Dr. Darrin Brager at the University of Texas at Austin investigated alterations in ion channels in Fragile X syndrome. They explored potential therapeutic effects of drugs which open and close these channels. Results published.

Read more